富氧空位δ-MnO2 纳米片封装单钴原子填充碳纳米管,实现高效氧气进化

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yan Cheng, Bo Cao, Xuan Xu, Lele Peng, Baocang Liu, Jinlu He, Jun Zhang
{"title":"富氧空位δ-MnO2 纳米片封装单钴原子填充碳纳米管,实现高效氧气进化","authors":"Yan Cheng, Bo Cao, Xuan Xu, Lele Peng, Baocang Liu, Jinlu He, Jun Zhang","doi":"10.1016/j.mtener.2024.101515","DOIUrl":null,"url":null,"abstract":"<p>Oxygen vacancy (OV<sub>ac</sub>) and interface engineering are effective tactics for regulating the electronic structure of electrocatalysts and optimizing the absorption/desorption of reactants and intermediates on the catalyst surface to enhance the oxygen evolution reaction (OER). Herein, a self-supported electrocatalyst, comprising δ-MnO<sub>2</sub> nanosheets grown on Co single atoms (CoSAs) anchored on N-doped carbon nanotubes (NCNTs) embedded with Co nanoparticle on a carbon cloth (CC) (δ-MnO<sub>2</sub>/Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC), was fabricated. Through in-situ growth of δ-MnO<sub>2</sub> nanosheets on Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC, the number of OV<sub>ac</sub> is increased, as proved by X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Positron annihilation lifetime spectrometer (PALS), due to the redox between MnO<sub>2</sub> and Co. Experimental results and theoretical calculations confirm that the formation of OV<sub>ac</sub> rich δ-MnO<sub>2</sub> nanosheets and the construction of heterogeneous interface between δ-MnO<sub>2</sub> and Co<sub>SAs</sub>-NCNTs endow the electrocatalyst with good conductivity, fast charge transfer, and multiple active sites, leading to rapid OER reaction kinetics. Therefore, the δ-MnO<sub>2</sub>/Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC electrocatalyst demonstrates remarkable OER performance, requiring only 165 mV overpotential to reach a current density of 10 mA cm<sup>−2</sup> in an alkaline solution.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"38 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen Vacancy Rich δ-MnO2 Nanosheets Encapsulating Single Cobalt Atoms-Anchored Carbon Nanotubes for Efficient Oxygen Evolution\",\"authors\":\"Yan Cheng, Bo Cao, Xuan Xu, Lele Peng, Baocang Liu, Jinlu He, Jun Zhang\",\"doi\":\"10.1016/j.mtener.2024.101515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxygen vacancy (OV<sub>ac</sub>) and interface engineering are effective tactics for regulating the electronic structure of electrocatalysts and optimizing the absorption/desorption of reactants and intermediates on the catalyst surface to enhance the oxygen evolution reaction (OER). Herein, a self-supported electrocatalyst, comprising δ-MnO<sub>2</sub> nanosheets grown on Co single atoms (CoSAs) anchored on N-doped carbon nanotubes (NCNTs) embedded with Co nanoparticle on a carbon cloth (CC) (δ-MnO<sub>2</sub>/Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC), was fabricated. Through in-situ growth of δ-MnO<sub>2</sub> nanosheets on Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC, the number of OV<sub>ac</sub> is increased, as proved by X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Positron annihilation lifetime spectrometer (PALS), due to the redox between MnO<sub>2</sub> and Co. Experimental results and theoretical calculations confirm that the formation of OV<sub>ac</sub> rich δ-MnO<sub>2</sub> nanosheets and the construction of heterogeneous interface between δ-MnO<sub>2</sub> and Co<sub>SAs</sub>-NCNTs endow the electrocatalyst with good conductivity, fast charge transfer, and multiple active sites, leading to rapid OER reaction kinetics. Therefore, the δ-MnO<sub>2</sub>/Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC electrocatalyst demonstrates remarkable OER performance, requiring only 165 mV overpotential to reach a current density of 10 mA cm<sup>−2</sup> in an alkaline solution.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101515\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101515","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧空位(OVac)和界面工程是调节电催化剂电子结构、优化催化剂表面对反应物和中间产物的吸收/解吸以增强氧进化反应(OER)的有效手段。在此,我们制备了一种自支撑电催化剂(δ-MnO2/CoNP@CoSAs-NCNTs/CC),该催化剂由生长在锚定在碳布(CC)上嵌有钴纳米粒子的掺杂 N 的碳纳米管(NCNT)上的钴单原子(CoSAs)组成。通过在 CoNP@CoSAs-NCNTs/CC 上原位生长 δ-MnO2 纳米片,X 射线光电子能谱(XPS)、电子顺磁共振(EPR)和正电子湮没寿命光谱仪(PALS)证明,由于 MnO2 和 Co 之间的氧化还原作用,OVac 的数量增加了。实验结果和理论计算证实,富含 OVac 的 δ-MnO2 纳米片的形成以及 δ-MnO2 与 CoSAs-NCNTs 之间异质界面的构建,使该电催化剂具有良好的导电性、快速的电荷转移和多个活性位点,从而导致快速的 OER 反应动力学。因此,δ-MnO2/CoNP@CoSAs-NCNTs/CC 电催化剂具有显著的 OER 性能,在碱性溶液中只需要 165 mV 的过电位就能达到 10 mA cm-2 的电流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen Vacancy Rich δ-MnO2 Nanosheets Encapsulating Single Cobalt Atoms-Anchored Carbon Nanotubes for Efficient Oxygen Evolution

Oxygen Vacancy Rich δ-MnO2 Nanosheets Encapsulating Single Cobalt Atoms-Anchored Carbon Nanotubes for Efficient Oxygen Evolution

Oxygen vacancy (OVac) and interface engineering are effective tactics for regulating the electronic structure of electrocatalysts and optimizing the absorption/desorption of reactants and intermediates on the catalyst surface to enhance the oxygen evolution reaction (OER). Herein, a self-supported electrocatalyst, comprising δ-MnO2 nanosheets grown on Co single atoms (CoSAs) anchored on N-doped carbon nanotubes (NCNTs) embedded with Co nanoparticle on a carbon cloth (CC) (δ-MnO2/CoNP@CoSAs-NCNTs/CC), was fabricated. Through in-situ growth of δ-MnO2 nanosheets on CoNP@CoSAs-NCNTs/CC, the number of OVac is increased, as proved by X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Positron annihilation lifetime spectrometer (PALS), due to the redox between MnO2 and Co. Experimental results and theoretical calculations confirm that the formation of OVac rich δ-MnO2 nanosheets and the construction of heterogeneous interface between δ-MnO2 and CoSAs-NCNTs endow the electrocatalyst with good conductivity, fast charge transfer, and multiple active sites, leading to rapid OER reaction kinetics. Therefore, the δ-MnO2/CoNP@CoSAs-NCNTs/CC electrocatalyst demonstrates remarkable OER performance, requiring only 165 mV overpotential to reach a current density of 10 mA cm−2 in an alkaline solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信