给定特征值的树高上限

IF 1 2区 数学 Q1 MATHEMATICS
Artūras Dubickas
{"title":"给定特征值的树高上限","authors":"Artūras Dubickas","doi":"10.1007/s00493-023-00071-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove that every totally real algebraic integer <span>\\(\\lambda \\)</span> of degree <span>\\(d \\ge 2\\)</span> occurs as an eigenvalue of some tree of height at most <span>\\(d(d+1)/2+3\\)</span>. In order to prove this, for a given algebraic number <span>\\(\\alpha \\ne 0\\)</span>, we investigate an additive semigroup that contains zero and is closed under the map <span>\\(x \\mapsto \\alpha /(1-x)\\)</span> for <span>\\(x \\ne 1\\)</span>. The problem of finding the smallest such semigroup seems to be of independent interest.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Upper Bound for the Height of a Tree with a Given Eigenvalue\",\"authors\":\"Artūras Dubickas\",\"doi\":\"10.1007/s00493-023-00071-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove that every totally real algebraic integer <span>\\\\(\\\\lambda \\\\)</span> of degree <span>\\\\(d \\\\ge 2\\\\)</span> occurs as an eigenvalue of some tree of height at most <span>\\\\(d(d+1)/2+3\\\\)</span>. In order to prove this, for a given algebraic number <span>\\\\(\\\\alpha \\\\ne 0\\\\)</span>, we investigate an additive semigroup that contains zero and is closed under the map <span>\\\\(x \\\\mapsto \\\\alpha /(1-x)\\\\)</span> for <span>\\\\(x \\\\ne 1\\\\)</span>. The problem of finding the smallest such semigroup seems to be of independent interest.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00071-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00071-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了每一个度为(d)的全实代数整数(lambda)都会作为某个高度为(d(d+1)/2+3)的树的特征值出现。为了证明这一点,对于一个给定的代数数(α),我们研究一个包含零并且在映射(x)下封闭的可加半群。寻找最小的这样的半群似乎是一个独立的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Upper Bound for the Height of a Tree with a Given Eigenvalue

In this paper we prove that every totally real algebraic integer \(\lambda \) of degree \(d \ge 2\) occurs as an eigenvalue of some tree of height at most \(d(d+1)/2+3\). In order to prove this, for a given algebraic number \(\alpha \ne 0\), we investigate an additive semigroup that contains zero and is closed under the map \(x \mapsto \alpha /(1-x)\) for \(x \ne 1\). The problem of finding the smallest such semigroup seems to be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信