极值仿射子空间和Khintchine-Jarník类型定理

IF 2.4 1区 数学 Q1 MATHEMATICS
{"title":"极值仿射子空间和Khintchine-Jarník类型定理","authors":"","doi":"10.1007/s00039-024-00665-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We prove a conjecture of Kleinbock which gives a clear-cut classification of all extremal affine subspaces of <span> <span>\\(\\mathbb{R}^{n}\\)</span> </span>. We also give an essentially complete classification of all Khintchine type affine subspaces, except for some boundary cases within two logarithmic scales. More general Jarník type theorems are proved as well, sometimes without the monotonicity of the approximation function. These results follow as consequences of our novel estimates for the number of rational points close to an affine subspace in terms of diophantine properties of its defining matrix. Our main tool is the multidimensional large sieve inequality and its dual form.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"177 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Affine Subspaces and Khintchine-Jarník Type Theorems\",\"authors\":\"\",\"doi\":\"10.1007/s00039-024-00665-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We prove a conjecture of Kleinbock which gives a clear-cut classification of all extremal affine subspaces of <span> <span>\\\\(\\\\mathbb{R}^{n}\\\\)</span> </span>. We also give an essentially complete classification of all Khintchine type affine subspaces, except for some boundary cases within two logarithmic scales. More general Jarník type theorems are proved as well, sometimes without the monotonicity of the approximation function. These results follow as consequences of our novel estimates for the number of rational points close to an affine subspace in terms of diophantine properties of its defining matrix. Our main tool is the multidimensional large sieve inequality and its dual form.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00665-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00665-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们证明了克莱因博克的一个猜想,它给出了 \(\mathbb{R}^{n}\) 的所有极值仿射子空间的清晰分类。除了两个对数尺度内的一些边界情况之外,我们还给出了所有欣钦内型仿射子空间的基本完整分类。我们还证明了更一般的雅尼克型定理,有时没有近似函数的单调性。这些结果是我们根据仿射子空间定义矩阵的二相性质对接近仿射子空间的有理点数量进行新估计的结果。我们的主要工具是多维大筛不等式及其对偶形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal Affine Subspaces and Khintchine-Jarník Type Theorems

Abstract

We prove a conjecture of Kleinbock which gives a clear-cut classification of all extremal affine subspaces of \(\mathbb{R}^{n}\) . We also give an essentially complete classification of all Khintchine type affine subspaces, except for some boundary cases within two logarithmic scales. More general Jarník type theorems are proved as well, sometimes without the monotonicity of the approximation function. These results follow as consequences of our novel estimates for the number of rational points close to an affine subspace in terms of diophantine properties of its defining matrix. Our main tool is the multidimensional large sieve inequality and its dual form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信