稳定最小超曲面的两个刚性结果

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giovanni Catino, Paolo Mastrolia, Alberto Roncoroni
{"title":"稳定最小超曲面的两个刚性结果","authors":"Giovanni Catino, Paolo Mastrolia, Alberto Roncoroni","doi":"10.1007/s00039-024-00662-1","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to prove two results concerning the rigidity of complete, immersed, orientable, stable minimal hypersurfaces: we show that they are hyperplane in <i>R</i><sup>4</sup>, while they do not exist in positively curved closed Riemannian (<i>n</i>+1)-manifold when <i>n</i>≤5; in particular, there are no stable minimal hypersurfaces in <i>S</i><sup><i>n</i>+1</sup> when <i>n</i>≤5. The first result was recently proved also by Chodosh and Li, and the second is a consequence of a more general result concerning minimal surfaces with finite index. Both theorems rely on a conformal method, inspired by a classical work of Fischer-Colbrie.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Rigidity Results for Stable Minimal Hypersurfaces\",\"authors\":\"Giovanni Catino, Paolo Mastrolia, Alberto Roncoroni\",\"doi\":\"10.1007/s00039-024-00662-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to prove two results concerning the rigidity of complete, immersed, orientable, stable minimal hypersurfaces: we show that they are hyperplane in <i>R</i><sup>4</sup>, while they do not exist in positively curved closed Riemannian (<i>n</i>+1)-manifold when <i>n</i>≤5; in particular, there are no stable minimal hypersurfaces in <i>S</i><sup><i>n</i>+1</sup> when <i>n</i>≤5. The first result was recently proved also by Chodosh and Li, and the second is a consequence of a more general result concerning minimal surfaces with finite index. Both theorems rely on a conformal method, inspired by a classical work of Fischer-Colbrie.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00662-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00662-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是证明两个关于完整的、浸没的、可定向的、稳定的最小超曲面的刚度的结果:我们证明它们在 R4 中是超平面,而当 n≤5 时,它们不存在于正曲封闭的黎曼(n+1)-manifold 中;特别是,当 n≤5 时,在 Sn+1 中不存在稳定的最小超曲面。第一个结果最近也由 Chodosh 和 Li 证明了,第二个结果是关于有限指数极小曲面的一个更普遍结果的结果。这两个定理都依赖于保角方法,其灵感来自费舍尔-科尔布里(Fischer-Colbrie)的经典著作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Rigidity Results for Stable Minimal Hypersurfaces

The aim of this paper is to prove two results concerning the rigidity of complete, immersed, orientable, stable minimal hypersurfaces: we show that they are hyperplane in R4, while they do not exist in positively curved closed Riemannian (n+1)-manifold when n≤5; in particular, there are no stable minimal hypersurfaces in Sn+1 when n≤5. The first result was recently proved also by Chodosh and Li, and the second is a consequence of a more general result concerning minimal surfaces with finite index. Both theorems rely on a conformal method, inspired by a classical work of Fischer-Colbrie.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信