{"title":"基于贝叶斯策略网络的软行动者批判学习","authors":"Qin Yang, Ramviyas Parasuraman","doi":"10.1145/3643862","DOIUrl":null,"url":null,"abstract":"<p>A strategy refers to the rules that the agent chooses the available actions to achieve goals. Adopting reasonable strategies is challenging but crucial for an intelligent agent with limited resources working in hazardous, unstructured, and dynamic environments to improve the system’s utility, decrease the overall cost, and increase mission success probability. This paper proposes a novel hierarchical strategy decomposition approach based on Bayesian chaining to separate an intricate policy into several simple sub-policies and organize their relationships as Bayesian strategy networks (BSN). We integrate this approach into the state-of-the-art DRL method – soft actor-critic (SAC), and build the corresponding Bayesian soft actor-critic (BSAC) model by organizing several sub-policies as a joint policy. Our method achieves the state-of-the-art performance on the standard continuous control benchmarks in the OpenAI Gym environment. The results demonstrate that the promising potential of the BSAC method significantly improves training efficiency. Furthermore, we extend the topic to the Multi-Agent systems (MAS), discussing the potential research fields and directions.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Strategy Networks Based Soft Actor-Critic Learning\",\"authors\":\"Qin Yang, Ramviyas Parasuraman\",\"doi\":\"10.1145/3643862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A strategy refers to the rules that the agent chooses the available actions to achieve goals. Adopting reasonable strategies is challenging but crucial for an intelligent agent with limited resources working in hazardous, unstructured, and dynamic environments to improve the system’s utility, decrease the overall cost, and increase mission success probability. This paper proposes a novel hierarchical strategy decomposition approach based on Bayesian chaining to separate an intricate policy into several simple sub-policies and organize their relationships as Bayesian strategy networks (BSN). We integrate this approach into the state-of-the-art DRL method – soft actor-critic (SAC), and build the corresponding Bayesian soft actor-critic (BSAC) model by organizing several sub-policies as a joint policy. Our method achieves the state-of-the-art performance on the standard continuous control benchmarks in the OpenAI Gym environment. The results demonstrate that the promising potential of the BSAC method significantly improves training efficiency. Furthermore, we extend the topic to the Multi-Agent systems (MAS), discussing the potential research fields and directions.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643862\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643862","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bayesian Strategy Networks Based Soft Actor-Critic Learning
A strategy refers to the rules that the agent chooses the available actions to achieve goals. Adopting reasonable strategies is challenging but crucial for an intelligent agent with limited resources working in hazardous, unstructured, and dynamic environments to improve the system’s utility, decrease the overall cost, and increase mission success probability. This paper proposes a novel hierarchical strategy decomposition approach based on Bayesian chaining to separate an intricate policy into several simple sub-policies and organize their relationships as Bayesian strategy networks (BSN). We integrate this approach into the state-of-the-art DRL method – soft actor-critic (SAC), and build the corresponding Bayesian soft actor-critic (BSAC) model by organizing several sub-policies as a joint policy. Our method achieves the state-of-the-art performance on the standard continuous control benchmarks in the OpenAI Gym environment. The results demonstrate that the promising potential of the BSAC method significantly improves training efficiency. Furthermore, we extend the topic to the Multi-Agent systems (MAS), discussing the potential research fields and directions.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.