{"title":"可测集的可观测性不等式和随机抛物方程的形状设计问题","authors":"Yuanhang Liu","doi":"10.1007/s00245-024-10106-9","DOIUrl":null,"url":null,"abstract":"<div><p>The primary objective of this paper is to directly establish the observability inequality for stochastic parabolic equations from measurable sets. In an immediate practical application, our focus centers on the investigation of optimal actuator placement to achieve minimum norm controls in the context of approximative controllability for stochastic parabolic equations. We introduce a comprehensive formulation of the optimization problem, encompassing both the determination of the actuator location and the corresponding minimum norm control. More precisely, we reformulate the problem into a two-player zero-sum game scenario, resulting in the derivation of four equivalent formulations. Ultimately, we substantiate the pivotal outcome that the solution to the relaxed optimization problem serves as the optimal actuator placement for the classical problem.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observability Inequality from Measurable Sets and the Shape Design Problem for Stochastic Parabolic Equations\",\"authors\":\"Yuanhang Liu\",\"doi\":\"10.1007/s00245-024-10106-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primary objective of this paper is to directly establish the observability inequality for stochastic parabolic equations from measurable sets. In an immediate practical application, our focus centers on the investigation of optimal actuator placement to achieve minimum norm controls in the context of approximative controllability for stochastic parabolic equations. We introduce a comprehensive formulation of the optimization problem, encompassing both the determination of the actuator location and the corresponding minimum norm control. More precisely, we reformulate the problem into a two-player zero-sum game scenario, resulting in the derivation of four equivalent formulations. Ultimately, we substantiate the pivotal outcome that the solution to the relaxed optimization problem serves as the optimal actuator placement for the classical problem.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10106-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10106-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Observability Inequality from Measurable Sets and the Shape Design Problem for Stochastic Parabolic Equations
The primary objective of this paper is to directly establish the observability inequality for stochastic parabolic equations from measurable sets. In an immediate practical application, our focus centers on the investigation of optimal actuator placement to achieve minimum norm controls in the context of approximative controllability for stochastic parabolic equations. We introduce a comprehensive formulation of the optimization problem, encompassing both the determination of the actuator location and the corresponding minimum norm control. More precisely, we reformulate the problem into a two-player zero-sum game scenario, resulting in the derivation of four equivalent formulations. Ultimately, we substantiate the pivotal outcome that the solution to the relaxed optimization problem serves as the optimal actuator placement for the classical problem.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.