稳健和协方差辅助张量响应回归

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ning Wang, Xin Zhang
{"title":"稳健和协方差辅助张量响应回归","authors":"Ning Wang, Xin Zhang","doi":"10.4310/sii.2024.v17.n2.a10","DOIUrl":null,"url":null,"abstract":"Tensor data analysis is gaining increasing popularity in modern multivariate statistics. When analyzing real-world tensor data, many existing tensor estimation approaches are sensitive to heavy-tailed data and outliers, in addition to the apparent high-dimensionality. In this article, we develop a robust and covariance-assisted tensor response regression model based on a recently proposed tensor t‑distribution to address these issues in tensor data. This model assumes that the tensor regression coefficient has a low-rank structure that can be learned more effectively using the additional covariance information. This enables a fast and robust decomposition-based estimation method. Theoretical analysis and numerical experiments demonstrate the superior performance of our approach. By addressing the heavy-tail, high-order, and high-dimensional issues, our work contributes to robust and effective estimation methods for tensor response regression, with broad applicability in various domains.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"24 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and covariance-assisted tensor response regression\",\"authors\":\"Ning Wang, Xin Zhang\",\"doi\":\"10.4310/sii.2024.v17.n2.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor data analysis is gaining increasing popularity in modern multivariate statistics. When analyzing real-world tensor data, many existing tensor estimation approaches are sensitive to heavy-tailed data and outliers, in addition to the apparent high-dimensionality. In this article, we develop a robust and covariance-assisted tensor response regression model based on a recently proposed tensor t‑distribution to address these issues in tensor data. This model assumes that the tensor regression coefficient has a low-rank structure that can be learned more effectively using the additional covariance information. This enables a fast and robust decomposition-based estimation method. Theoretical analysis and numerical experiments demonstrate the superior performance of our approach. By addressing the heavy-tail, high-order, and high-dimensional issues, our work contributes to robust and effective estimation methods for tensor response regression, with broad applicability in various domains.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/sii.2024.v17.n2.a10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/sii.2024.v17.n2.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

张量数据分析在现代多元统计中越来越受欢迎。在分析真实世界的张量数据时,除了明显的高维性之外,许多现有的张量估计方法对重尾数据和异常值都很敏感。在本文中,我们基于最近提出的张量 t 分布建立了一个稳健的协方差辅助张量响应回归模型,以解决张量数据中的这些问题。该模型假定张量回归系数具有低秩结构,利用额外的协方差信息可以更有效地学习该结构。这使得基于分解的估计方法既快速又稳健。理论分析和数值实验证明了我们的方法性能优越。通过解决重尾、高阶和高维问题,我们的工作有助于为张量响应回归提供稳健有效的估计方法,并在各个领域具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and covariance-assisted tensor response regression
Tensor data analysis is gaining increasing popularity in modern multivariate statistics. When analyzing real-world tensor data, many existing tensor estimation approaches are sensitive to heavy-tailed data and outliers, in addition to the apparent high-dimensionality. In this article, we develop a robust and covariance-assisted tensor response regression model based on a recently proposed tensor t‑distribution to address these issues in tensor data. This model assumes that the tensor regression coefficient has a low-rank structure that can be learned more effectively using the additional covariance information. This enables a fast and robust decomposition-based estimation method. Theoretical analysis and numerical experiments demonstrate the superior performance of our approach. By addressing the heavy-tail, high-order, and high-dimensional issues, our work contributes to robust and effective estimation methods for tensor response regression, with broad applicability in various domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信