{"title":"通过基于期望最大化的复合似然算法进行相关 Wishart 矩阵分类","authors":"Zhou Lan","doi":"10.4310/22-sii770","DOIUrl":null,"url":null,"abstract":"Positive-definite matrix-variate data is becoming popular in computer vision. The computer vision data descriptors in the form of Region Covariance Descriptors (RCD) are positive definite matrices, which extract the key features of the images. The RCDs are extensively used in image set classification. Some classification methods treating RCDs as Wishart distributed random matrices are being proposed. However, the majority of the current methods preclude the potential correlation among the RCDs caused by the so-called auxiliary information (e.g., subjects’ ages and nose widths, etc). Modeling correlated Wishart matrices is difficult since the joint density function of correlated Wishart matrices is difficult to be obtained. In this paper, we propose an Expectation-Maximization composite likelihoodbased algorithm of Wishart matrices to tackle this issue. Given the numerical studies based on the synthetic data and the real data (Chicago face data-set), our proposed algorithm performs better than the alternative methods which do not consider the correlation caused by the so-called auxiliary information.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"27 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlated Wishart matrices classification via an expectation-maximization composite likelihood-based algorithm\",\"authors\":\"Zhou Lan\",\"doi\":\"10.4310/22-sii770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive-definite matrix-variate data is becoming popular in computer vision. The computer vision data descriptors in the form of Region Covariance Descriptors (RCD) are positive definite matrices, which extract the key features of the images. The RCDs are extensively used in image set classification. Some classification methods treating RCDs as Wishart distributed random matrices are being proposed. However, the majority of the current methods preclude the potential correlation among the RCDs caused by the so-called auxiliary information (e.g., subjects’ ages and nose widths, etc). Modeling correlated Wishart matrices is difficult since the joint density function of correlated Wishart matrices is difficult to be obtained. In this paper, we propose an Expectation-Maximization composite likelihoodbased algorithm of Wishart matrices to tackle this issue. Given the numerical studies based on the synthetic data and the real data (Chicago face data-set), our proposed algorithm performs better than the alternative methods which do not consider the correlation caused by the so-called auxiliary information.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/22-sii770\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii770","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Correlated Wishart matrices classification via an expectation-maximization composite likelihood-based algorithm
Positive-definite matrix-variate data is becoming popular in computer vision. The computer vision data descriptors in the form of Region Covariance Descriptors (RCD) are positive definite matrices, which extract the key features of the images. The RCDs are extensively used in image set classification. Some classification methods treating RCDs as Wishart distributed random matrices are being proposed. However, the majority of the current methods preclude the potential correlation among the RCDs caused by the so-called auxiliary information (e.g., subjects’ ages and nose widths, etc). Modeling correlated Wishart matrices is difficult since the joint density function of correlated Wishart matrices is difficult to be obtained. In this paper, we propose an Expectation-Maximization composite likelihoodbased algorithm of Wishart matrices to tackle this issue. Given the numerical studies based on the synthetic data and the real data (Chicago face data-set), our proposed algorithm performs better than the alternative methods which do not consider the correlation caused by the so-called auxiliary information.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.