剪切作用下的二维多稳结构:平衡构型、过渡模式和边界效应

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maor Shuminov, Sefi Givli
{"title":"剪切作用下的二维多稳结构:平衡构型、过渡模式和边界效应","authors":"Maor Shuminov, Sefi Givli","doi":"10.2140/jomms.2024.19.265","DOIUrl":null,"url":null,"abstract":"<p>Multistable structures have a promising potential in a wide range of engineering and scientific applications, such as shock absorption, soft robotics, superelastic structures, vibration mitigation, foldable structures, configurable structures, programmable materials, and tunable shape-memory structures. In addition, they are directly relevant to the study of materials undergoing martensitic phase transformations, macromolecular networks, and the development of new metamaterials. In this paper, we study the quasistatic behavior of 2-D bistable lattices subjected to shear, with emphasis on the multitude of equilibrium configurations, overall stress-strain relation, sequence of phase transition, and statistics of stress jumps. In particular, the influence of material (properties of the individual bistable interaction) and microstructure geometry (architecture of the lattice) on the above mentioned characteristics of the overall behavior is investigated. To this end, we perform extensive numerical simulations with four different periodic lattice geometries. We find that, for the same loading conditions, different lattice geometries or different material (bistable) properties of the building block may result in fundamentally different overall (macro) behaviors. This is manifested both in the overall stress-strain relation and also in the evolution of the phase-transition patterns. Also, hysteresis, which is a macroscopic manifestation of the energy dissipated during change of configuration, is significantly affected by the lattice architecture. Similar effects of geometrical incompatibility, but at the level of the atomic lattice, have been observed in shape-memory alloys. Our results also reproduce stress peaks, associated with nucleation of a new phase. The magnitude of these nucleation peaks, their location, and number is dictated by the geometry of the lattice and boundary effects that lead to stress concentrations. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-D multistable structures under shear: equilibrium configurations, transition patterns, and boundary effects\",\"authors\":\"Maor Shuminov, Sefi Givli\",\"doi\":\"10.2140/jomms.2024.19.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multistable structures have a promising potential in a wide range of engineering and scientific applications, such as shock absorption, soft robotics, superelastic structures, vibration mitigation, foldable structures, configurable structures, programmable materials, and tunable shape-memory structures. In addition, they are directly relevant to the study of materials undergoing martensitic phase transformations, macromolecular networks, and the development of new metamaterials. In this paper, we study the quasistatic behavior of 2-D bistable lattices subjected to shear, with emphasis on the multitude of equilibrium configurations, overall stress-strain relation, sequence of phase transition, and statistics of stress jumps. In particular, the influence of material (properties of the individual bistable interaction) and microstructure geometry (architecture of the lattice) on the above mentioned characteristics of the overall behavior is investigated. To this end, we perform extensive numerical simulations with four different periodic lattice geometries. We find that, for the same loading conditions, different lattice geometries or different material (bistable) properties of the building block may result in fundamentally different overall (macro) behaviors. This is manifested both in the overall stress-strain relation and also in the evolution of the phase-transition patterns. Also, hysteresis, which is a macroscopic manifestation of the energy dissipated during change of configuration, is significantly affected by the lattice architecture. Similar effects of geometrical incompatibility, but at the level of the atomic lattice, have been observed in shape-memory alloys. Our results also reproduce stress peaks, associated with nucleation of a new phase. The magnitude of these nucleation peaks, their location, and number is dictated by the geometry of the lattice and boundary effects that lead to stress concentrations. </p>\",\"PeriodicalId\":50134,\"journal\":{\"name\":\"Journal of Mechanics of Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics of Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2140/jomms.2024.19.265\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.265","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多稳态结构在减震、软机器人、超弹性结构、减震、可折叠结构、可配置结构、可编程材料和可调形状记忆结构等广泛的工程和科学应用中具有巨大潜力。此外,它们还与研究发生马氏体相变的材料、大分子网络和新型超材料的开发直接相关。本文研究了二维双稳态晶格在剪切作用下的准静态行为,重点关注多种平衡构型、整体应力-应变关系、相变序列以及应力跃迁统计。我们特别研究了材料(单个双稳态相互作用的特性)和微结构几何(晶格的结构)对上述整体行为特征的影响。为此,我们使用四种不同的周期性晶格几何结构进行了大量的数值模拟。我们发现,在相同的加载条件下,不同的晶格几何结构或构件的不同材料(双稳态)特性可能会导致根本不同的整体(宏观)行为。这既表现在整体应力应变关系上,也表现在相变模式的演变上。此外,作为构型变化过程中能量耗散的宏观表现形式的滞后现象也会受到晶格结构的显著影响。在形状记忆合金中也观察到了类似的几何不相容性效应,不过是在原子晶格层面上。我们的结果还再现了与新相成核相关的应力峰。这些成核峰的大小、位置和数量由晶格的几何形状和导致应力集中的边界效应决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-D multistable structures under shear: equilibrium configurations, transition patterns, and boundary effects

Multistable structures have a promising potential in a wide range of engineering and scientific applications, such as shock absorption, soft robotics, superelastic structures, vibration mitigation, foldable structures, configurable structures, programmable materials, and tunable shape-memory structures. In addition, they are directly relevant to the study of materials undergoing martensitic phase transformations, macromolecular networks, and the development of new metamaterials. In this paper, we study the quasistatic behavior of 2-D bistable lattices subjected to shear, with emphasis on the multitude of equilibrium configurations, overall stress-strain relation, sequence of phase transition, and statistics of stress jumps. In particular, the influence of material (properties of the individual bistable interaction) and microstructure geometry (architecture of the lattice) on the above mentioned characteristics of the overall behavior is investigated. To this end, we perform extensive numerical simulations with four different periodic lattice geometries. We find that, for the same loading conditions, different lattice geometries or different material (bistable) properties of the building block may result in fundamentally different overall (macro) behaviors. This is manifested both in the overall stress-strain relation and also in the evolution of the phase-transition patterns. Also, hysteresis, which is a macroscopic manifestation of the energy dissipated during change of configuration, is significantly affected by the lattice architecture. Similar effects of geometrical incompatibility, but at the level of the atomic lattice, have been observed in shape-memory alloys. Our results also reproduce stress peaks, associated with nucleation of a new phase. The magnitude of these nucleation peaks, their location, and number is dictated by the geometry of the lattice and boundary effects that lead to stress concentrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics of Materials and Structures
Journal of Mechanics of Materials and Structures 工程技术-材料科学:综合
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
3.5 months
期刊介绍: Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信