Winols:FPGA 上的大平铺稀疏 Winograd CNN 加速器

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kunpeng Xie, Ye Lu, Xinyu He, Dezhi Yi, Huijuan Dong, Yao Chen
{"title":"Winols:FPGA 上的大平铺稀疏 Winograd CNN 加速器","authors":"Kunpeng Xie, Ye Lu, Xinyu He, Dezhi Yi, Huijuan Dong, Yao Chen","doi":"10.1145/3643682","DOIUrl":null,"url":null,"abstract":"<p>Convolutional Neural Networks (CNNs) can benefit from the computational reductions provided by the Winograd minimal filtering algorithm and weight pruning. However, harnessing the potential of both methods simultaneously introduces complexity in designing pruning algorithms and accelerators. Prior studies aimed to establish regular sparsity patterns in the Winograd domain, but they were primarily suited for small tiles, with domain transformation dictating the sparsity ratio. The irregularities in data access and domain transformation pose challenges in accelerator design, especially for larger Winograd tiles. This paper introduces ”Winols,” an innovative algorithm-hardware co-design strategy that emphasizes the strengths of the large-tiling Winograd algorithm. Through a spatial-to-Winograd relevance degree evaluation, we extensively explore domain transformation and propose a cross-domain pruning technique that retains sparsity across both spatial and Winograd domains. To compress pruned weight matrices, we invent a relative column encoding scheme. We further design an FPGA-based accelerator for CNN models with large Winograd tiles and sparse matrix-vector operations. Evaluations indicate our pruning method achieves up to 80% weight tile sparsity in the Winograd domain without compromising accuracy. Our Winols accelerator outperforms dense accelerator by a factor of 31.7 × in inference latency. When compared with prevailing sparse Winograd accelerators, Winols reduces latency by an average of 10.9 ×, and improves DSP and energy efficiencies by over 5.6 × and 5.7 ×, respectively. When compared with the CPU and GPU platform, Winols accelerator with tile size 8 × 8 achieves 24.6 × and 2.84 × energy efficiency improvements, respectively.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Winols: A Large-Tiling Sparse Winograd CNN Accelerator on FPGAs\",\"authors\":\"Kunpeng Xie, Ye Lu, Xinyu He, Dezhi Yi, Huijuan Dong, Yao Chen\",\"doi\":\"10.1145/3643682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convolutional Neural Networks (CNNs) can benefit from the computational reductions provided by the Winograd minimal filtering algorithm and weight pruning. However, harnessing the potential of both methods simultaneously introduces complexity in designing pruning algorithms and accelerators. Prior studies aimed to establish regular sparsity patterns in the Winograd domain, but they were primarily suited for small tiles, with domain transformation dictating the sparsity ratio. The irregularities in data access and domain transformation pose challenges in accelerator design, especially for larger Winograd tiles. This paper introduces ”Winols,” an innovative algorithm-hardware co-design strategy that emphasizes the strengths of the large-tiling Winograd algorithm. Through a spatial-to-Winograd relevance degree evaluation, we extensively explore domain transformation and propose a cross-domain pruning technique that retains sparsity across both spatial and Winograd domains. To compress pruned weight matrices, we invent a relative column encoding scheme. We further design an FPGA-based accelerator for CNN models with large Winograd tiles and sparse matrix-vector operations. Evaluations indicate our pruning method achieves up to 80% weight tile sparsity in the Winograd domain without compromising accuracy. Our Winols accelerator outperforms dense accelerator by a factor of 31.7 × in inference latency. When compared with prevailing sparse Winograd accelerators, Winols reduces latency by an average of 10.9 ×, and improves DSP and energy efficiencies by over 5.6 × and 5.7 ×, respectively. When compared with the CPU and GPU platform, Winols accelerator with tile size 8 × 8 achieves 24.6 × and 2.84 × energy efficiency improvements, respectively.</p>\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643682\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643682","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)可受益于 Winograd 最小过滤算法和权重剪枝带来的计算量减少。然而,同时利用这两种方法的潜力会给剪枝算法和加速器的设计带来复杂性。之前的研究旨在在 Winograd 域中建立规则的稀疏性模式,但这些研究主要适用于小型瓦片,域变换决定了稀疏性比率。数据访问和域变换的不规则性给加速器设计带来了挑战,特别是对于较大的 Winograd 瓦。本文介绍的 "Winols "是一种创新的算法-硬件协同设计策略,它强调了大型瓦片 Winograd 算法的优势。通过空间到 Winograd 相关度评估,我们广泛探索了领域转换,并提出了一种跨领域剪枝技术,可在空间和 Winograd 领域保留稀疏性。为了压缩剪枝后的权重矩阵,我们发明了一种相对列编码方案。我们进一步设计了一种基于 FPGA 的加速器,用于具有大型 Winograd 层和稀疏矩阵-向量操作的 CNN 模型。评估结果表明,我们的剪枝方法在 Winograd 域中实现了高达 80% 的权重瓦稀疏性,而不会影响精度。在推理延迟方面,我们的 Winols 加速器比密集加速器快 31.7 倍。与现有的稀疏 Winograd 加速器相比,Winols 的延迟平均减少了 10.9 倍,DSP 和能效分别提高了 5.6 倍和 5.7 倍。与 CPU 和 GPU 平台相比,瓦片大小为 8 × 8 的 Winols 加速器的能效分别提高了 24.6 倍和 2.84 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Winols: A Large-Tiling Sparse Winograd CNN Accelerator on FPGAs

Convolutional Neural Networks (CNNs) can benefit from the computational reductions provided by the Winograd minimal filtering algorithm and weight pruning. However, harnessing the potential of both methods simultaneously introduces complexity in designing pruning algorithms and accelerators. Prior studies aimed to establish regular sparsity patterns in the Winograd domain, but they were primarily suited for small tiles, with domain transformation dictating the sparsity ratio. The irregularities in data access and domain transformation pose challenges in accelerator design, especially for larger Winograd tiles. This paper introduces ”Winols,” an innovative algorithm-hardware co-design strategy that emphasizes the strengths of the large-tiling Winograd algorithm. Through a spatial-to-Winograd relevance degree evaluation, we extensively explore domain transformation and propose a cross-domain pruning technique that retains sparsity across both spatial and Winograd domains. To compress pruned weight matrices, we invent a relative column encoding scheme. We further design an FPGA-based accelerator for CNN models with large Winograd tiles and sparse matrix-vector operations. Evaluations indicate our pruning method achieves up to 80% weight tile sparsity in the Winograd domain without compromising accuracy. Our Winols accelerator outperforms dense accelerator by a factor of 31.7 × in inference latency. When compared with prevailing sparse Winograd accelerators, Winols reduces latency by an average of 10.9 ×, and improves DSP and energy efficiencies by over 5.6 × and 5.7 ×, respectively. When compared with the CPU and GPU platform, Winols accelerator with tile size 8 × 8 achieves 24.6 × and 2.84 × energy efficiency improvements, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信