Xiaorong Hao, Bo Liu, Xinyan Yang, Xiangguo Sun, Qing Meng, Jiuxin Cao
{"title":"利用图熵引导进行多阶段动态虚假信息检测","authors":"Xiaorong Hao, Bo Liu, Xinyan Yang, Xiangguo Sun, Qing Meng, Jiuxin Cao","doi":"10.1007/s11280-024-01243-w","DOIUrl":null,"url":null,"abstract":"<p>Online disinformation has become one of the most severe concerns in today’s world. Recognizing disinformation timely and effectively is very hard, because the propagation process of disinformation is dynamic and complicated. The existing newest research leverage uniform time intervals to study the multi-stage propagation features of disinformation. However, uniform time intervals are unrealistic in the real world, cause the process of information propagation is not regular. In light of these facts, we propose a novel and effective framework <b><i>M</i></b><i>ulti</i>-<b><i>s</i></b><i>tage</i> <i>D</i><i>ynamic</i> <b><i>D</i></b><i>isinformation</i> <b><i>D</i></b><i>etection with Graph Entropy Guidance</i>(MsDD) to better analyze multi-stage propagation patterns. Instead of traditional snapshots, we analyze the dynamic propagation network via graph entropy, which can work effectively in finding the dynamic and variable-length stages. In this way, we can explicitly learn the changing pattern of propagation stages and support timely detection even at the early stages. Based on this effective multi-stage analysis framework, we further propose a novel dynamic analysis model to model both the structural and sequential evolving features. Extensive experiments on two real-world datasets prove the superiority of our model. We open the datasets and source code at https://github.com/researchxr/MsDD.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"155-156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stage dynamic disinformation detection with graph entropy guidance\",\"authors\":\"Xiaorong Hao, Bo Liu, Xinyan Yang, Xiangguo Sun, Qing Meng, Jiuxin Cao\",\"doi\":\"10.1007/s11280-024-01243-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online disinformation has become one of the most severe concerns in today’s world. Recognizing disinformation timely and effectively is very hard, because the propagation process of disinformation is dynamic and complicated. The existing newest research leverage uniform time intervals to study the multi-stage propagation features of disinformation. However, uniform time intervals are unrealistic in the real world, cause the process of information propagation is not regular. In light of these facts, we propose a novel and effective framework <b><i>M</i></b><i>ulti</i>-<b><i>s</i></b><i>tage</i> <i>D</i><i>ynamic</i> <b><i>D</i></b><i>isinformation</i> <b><i>D</i></b><i>etection with Graph Entropy Guidance</i>(MsDD) to better analyze multi-stage propagation patterns. Instead of traditional snapshots, we analyze the dynamic propagation network via graph entropy, which can work effectively in finding the dynamic and variable-length stages. In this way, we can explicitly learn the changing pattern of propagation stages and support timely detection even at the early stages. Based on this effective multi-stage analysis framework, we further propose a novel dynamic analysis model to model both the structural and sequential evolving features. Extensive experiments on two real-world datasets prove the superiority of our model. We open the datasets and source code at https://github.com/researchxr/MsDD.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":\"155-156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01243-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01243-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-stage dynamic disinformation detection with graph entropy guidance
Online disinformation has become one of the most severe concerns in today’s world. Recognizing disinformation timely and effectively is very hard, because the propagation process of disinformation is dynamic and complicated. The existing newest research leverage uniform time intervals to study the multi-stage propagation features of disinformation. However, uniform time intervals are unrealistic in the real world, cause the process of information propagation is not regular. In light of these facts, we propose a novel and effective framework Multi-stageDynamicDisinformationDetection with Graph Entropy Guidance(MsDD) to better analyze multi-stage propagation patterns. Instead of traditional snapshots, we analyze the dynamic propagation network via graph entropy, which can work effectively in finding the dynamic and variable-length stages. In this way, we can explicitly learn the changing pattern of propagation stages and support timely detection even at the early stages. Based on this effective multi-stage analysis framework, we further propose a novel dynamic analysis model to model both the structural and sequential evolving features. Extensive experiments on two real-world datasets prove the superiority of our model. We open the datasets and source code at https://github.com/researchxr/MsDD.