钢化序列空间中的非线性钢化分数阶 BVP 无限系统

IF 1.7 4区 数学 Q1 Mathematics
Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini
{"title":"钢化序列空间中的非线性钢化分数阶 BVP 无限系统","authors":"Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini","doi":"10.1186/s13661-024-01826-6","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence results of the infinite system of tempered fractional BVPs $$\\begin{aligned}& {}^{\\mathtt{R}}_{0}\\mathrm{D}_{\\mathrm{r}}^{\\varrho , \\uplambda} \\mathtt{z}_{\\mathtt{j}}(\\mathrm{r})+\\psi _{\\mathtt{j}}\\bigl(\\mathrm{r}, \\mathtt{z}(\\mathrm{r})\\bigr)=0,\\quad 0< \\mathrm{r}< 1, \\\\& \\mathtt{z}_{\\mathtt{j}}(0)=0,\\qquad {}^{\\mathtt{R}}_{0} \\mathrm{D}_{ \\mathrm{r}}^{\\mathtt{m}, \\uplambda} \\mathtt{z}_{\\mathtt{j}}(0)=0, \\\\& \\mathtt{b}_{1} \\mathtt{z}_{\\mathtt{j}}(1)+\\mathtt{b}_{2} {}^{ \\mathtt{R}}_{0}\\mathrm{D}_{\\mathrm{r}}^{\\mathtt{m}, \\uplambda} \\mathtt{z}_{\\mathtt{j}}(1)=0, \\end{aligned}$$ where $\\mathtt{j}\\in \\mathbb{N}$ , $2<\\varrho \\le 3$ , $1<\\mathtt{m}\\le 2$ , by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"292 1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces\",\"authors\":\"Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini\",\"doi\":\"10.1186/s13661-024-01826-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the existence results of the infinite system of tempered fractional BVPs $$\\\\begin{aligned}& {}^{\\\\mathtt{R}}_{0}\\\\mathrm{D}_{\\\\mathrm{r}}^{\\\\varrho , \\\\uplambda} \\\\mathtt{z}_{\\\\mathtt{j}}(\\\\mathrm{r})+\\\\psi _{\\\\mathtt{j}}\\\\bigl(\\\\mathrm{r}, \\\\mathtt{z}(\\\\mathrm{r})\\\\bigr)=0,\\\\quad 0< \\\\mathrm{r}< 1, \\\\\\\\& \\\\mathtt{z}_{\\\\mathtt{j}}(0)=0,\\\\qquad {}^{\\\\mathtt{R}}_{0} \\\\mathrm{D}_{ \\\\mathrm{r}}^{\\\\mathtt{m}, \\\\uplambda} \\\\mathtt{z}_{\\\\mathtt{j}}(0)=0, \\\\\\\\& \\\\mathtt{b}_{1} \\\\mathtt{z}_{\\\\mathtt{j}}(1)+\\\\mathtt{b}_{2} {}^{ \\\\mathtt{R}}_{0}\\\\mathrm{D}_{\\\\mathrm{r}}^{\\\\mathtt{m}, \\\\uplambda} \\\\mathtt{z}_{\\\\mathtt{j}}(1)=0, \\\\end{aligned}$$ where $\\\\mathtt{j}\\\\in \\\\mathbb{N}$ , $2<\\\\varrho \\\\le 3$ , $1<\\\\mathtt{m}\\\\le 2$ , by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"292 1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01826-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01826-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了有节制分数 BVPs 无限系统的存在性结果 $$\begin{aligned}& {}^{\mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^\{varrho 、\uplambda} \mathtt{z}_{\mathtt{j}}(\mathrm{r})+\psi _{\mathtt{j}}\bigl(\mathrm{r}, \mathtt{z}(\mathrm{r})\bigr)=0,\quad 0< \mathrm{r}< 1, \& \mathtt{z}_{\mathtt{j}}(0)=0,\qquad {}^{\mathtt{R}}_{0}\mathrm{D}_{ \mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(0)=0,\& \mathtt{b}_{1}\mathtt{z}_{\mathtt{j}}(1)+\mathtt{b}_{2}{}^{ \mathtt{R}}_{0}\mathrm{D}_{mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{mathtt{j}}(1)=0, \end{aligned}$ 其中 $\mathtt{j}in \mathbb{N}$ 、$2<\varrho \le 3$ , $1<\mathtt{m}\le 2$, 通过利用非紧凑性的豪斯多夫度量和调和序列空间中的梅尔-基勒定点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
This paper deals with the existence results of the infinite system of tempered fractional BVPs $$\begin{aligned}& {}^{\mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\varrho , \uplambda} \mathtt{z}_{\mathtt{j}}(\mathrm{r})+\psi _{\mathtt{j}}\bigl(\mathrm{r}, \mathtt{z}(\mathrm{r})\bigr)=0,\quad 0< \mathrm{r}< 1, \\& \mathtt{z}_{\mathtt{j}}(0)=0,\qquad {}^{\mathtt{R}}_{0} \mathrm{D}_{ \mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(0)=0, \\& \mathtt{b}_{1} \mathtt{z}_{\mathtt{j}}(1)+\mathtt{b}_{2} {}^{ \mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(1)=0, \end{aligned}$$ where $\mathtt{j}\in \mathbb{N}$ , $2<\varrho \le 3$ , $1<\mathtt{m}\le 2$ , by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信