图形极限和图形谱极值问题

IF 0.9 3区 数学 Q2 MATHEMATICS
Lele Liu
{"title":"图形极限和图形谱极值问题","authors":"Lele Liu","doi":"10.1137/22m1508807","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 590-608, March 2024. <br/> Abstract. We prove two conjectures in spectral extremal graph theory involving the linear combinations of graph eigenvalues. Let [math] be the largest eigenvalue of the adjacency matrix of a graph [math] and [math] be the complement of [math]. A nice conjecture states that the graph on [math] vertices maximizing [math] is the join of a clique and an independent set with [math] and [math] (also [math] and [math] if [math]) vertices, respectively. We resolve this conjecture for sufficiently large [math] using analytic methods. Our second result concerns the [math]-spread of a graph [math], which is defined as the difference between the largest eigenvalue and least eigenvalue of the signless Laplacian of [math]. It was conjectured by Cvetković, Rowlinson, and Simić [Publ. Inst. Math., 81 (2007), pp. 11–27] that the unique [math]-vertex connected graph of maximum [math]-spread is the graph formed by adding a pendant edge to [math]. We confirm this conjecture for sufficiently large [math].","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Limits and Spectral Extremal Problems for Graphs\",\"authors\":\"Lele Liu\",\"doi\":\"10.1137/22m1508807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 590-608, March 2024. <br/> Abstract. We prove two conjectures in spectral extremal graph theory involving the linear combinations of graph eigenvalues. Let [math] be the largest eigenvalue of the adjacency matrix of a graph [math] and [math] be the complement of [math]. A nice conjecture states that the graph on [math] vertices maximizing [math] is the join of a clique and an independent set with [math] and [math] (also [math] and [math] if [math]) vertices, respectively. We resolve this conjecture for sufficiently large [math] using analytic methods. Our second result concerns the [math]-spread of a graph [math], which is defined as the difference between the largest eigenvalue and least eigenvalue of the signless Laplacian of [math]. It was conjectured by Cvetković, Rowlinson, and Simić [Publ. Inst. Math., 81 (2007), pp. 11–27] that the unique [math]-vertex connected graph of maximum [math]-spread is the graph formed by adding a pendant edge to [math]. We confirm this conjecture for sufficiently large [math].\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1508807\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1508807","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷,第 1 期,第 590-608 页,2024 年 3 月。 摘要。我们证明了谱极值图论中涉及图特征值线性组合的两个猜想。设[math]是图[math]邻接矩阵的最大特征值,[math]是[math]的补集。一个不错的猜想指出,[math] 顶点上[math] 最大的图是一个小群和一个独立集的连接,小群和独立集的顶点分别是[math]和[math](如果是[math],则也是[math]和[math])。对于足够大的 [math],我们用分析方法解决了这个猜想。我们的第二个结果涉及图[math]的[math]-spread,它被定义为[math]的无符号拉普拉奇的最大特征值和最小特征值之差。根据 Cvetković、Rowlinson 和 Simić 的猜想[Publ. Inst. Math., 81 (2007), pp.对于足够大的 [math],我们证实了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Limits and Spectral Extremal Problems for Graphs
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 590-608, March 2024.
Abstract. We prove two conjectures in spectral extremal graph theory involving the linear combinations of graph eigenvalues. Let [math] be the largest eigenvalue of the adjacency matrix of a graph [math] and [math] be the complement of [math]. A nice conjecture states that the graph on [math] vertices maximizing [math] is the join of a clique and an independent set with [math] and [math] (also [math] and [math] if [math]) vertices, respectively. We resolve this conjecture for sufficiently large [math] using analytic methods. Our second result concerns the [math]-spread of a graph [math], which is defined as the difference between the largest eigenvalue and least eigenvalue of the signless Laplacian of [math]. It was conjectured by Cvetković, Rowlinson, and Simić [Publ. Inst. Math., 81 (2007), pp. 11–27] that the unique [math]-vertex connected graph of maximum [math]-spread is the graph formed by adding a pendant edge to [math]. We confirm this conjecture for sufficiently large [math].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信