{"title":"代数维度有界的伯努利位移的强遍历现象","authors":"Aristotelis Panagiotopoulos , Assaf Shani","doi":"10.1016/j.apal.2024.103412","DOIUrl":null,"url":null,"abstract":"<div><p>The algebraic dimension of a Polish permutation group <span><math><mi>Q</mi><mo>≤</mo><mrow><mi>Sym</mi></mrow><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is the size of the largest <span><math><mi>A</mi><mo>⊆</mo><mi>N</mi></math></span> with the property that the orbit of every <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> under the pointwise stabilizer of <span><math><mi>A</mi><mo>∖</mo><mo>{</mo><mi>a</mi><mo>}</mo></math></span> is infinite. We study the Bernoulli shift <span><math><mi>P</mi><mo>↷</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> for various Polish permutation groups <em>P</em> and we provide criteria under which the <em>P</em>-shift is generically ergodic relative to the injective part of the <em>Q</em>-shift, when <em>Q</em> has algebraic dimension ≤<em>n</em>. We use this to show that the sequence of pairwise ⁎-reduction-incomparable equivalence relations defined in <span>[18]</span> is a strictly increasing sequence in the Borel reduction hierarchy. We also use our main theorem to exhibit an equivalence relation of pinned cardinal <span><math><msubsup><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> which strongly resembles the equivalence relation of pinned cardinal <span><math><msubsup><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> from <span>[25]</span>, but which does not Borel reduce to the latter. It remains open whether they are actually incomparable under Borel reductions.</p><p>Our proofs rely on the study of symmetric models whose symmetries come from the group <em>Q</em>. We show that when <em>Q</em> is “locally finite”—e.g. when <span><math><mi>Q</mi><mo>=</mo><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, where <span><math><mi>M</mi></math></span> is the Fraïssé limit of a Fraïssé class satisfying the disjoint amalgamation property—the corresponding symmetric model admits a theory of supports which is analogous to that in the basic Cohen model.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 5","pages":"Article 103412"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong ergodicity phenomena for Bernoulli shifts of bounded algebraic dimension\",\"authors\":\"Aristotelis Panagiotopoulos , Assaf Shani\",\"doi\":\"10.1016/j.apal.2024.103412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The algebraic dimension of a Polish permutation group <span><math><mi>Q</mi><mo>≤</mo><mrow><mi>Sym</mi></mrow><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is the size of the largest <span><math><mi>A</mi><mo>⊆</mo><mi>N</mi></math></span> with the property that the orbit of every <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> under the pointwise stabilizer of <span><math><mi>A</mi><mo>∖</mo><mo>{</mo><mi>a</mi><mo>}</mo></math></span> is infinite. We study the Bernoulli shift <span><math><mi>P</mi><mo>↷</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> for various Polish permutation groups <em>P</em> and we provide criteria under which the <em>P</em>-shift is generically ergodic relative to the injective part of the <em>Q</em>-shift, when <em>Q</em> has algebraic dimension ≤<em>n</em>. We use this to show that the sequence of pairwise ⁎-reduction-incomparable equivalence relations defined in <span>[18]</span> is a strictly increasing sequence in the Borel reduction hierarchy. We also use our main theorem to exhibit an equivalence relation of pinned cardinal <span><math><msubsup><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> which strongly resembles the equivalence relation of pinned cardinal <span><math><msubsup><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> from <span>[25]</span>, but which does not Borel reduce to the latter. It remains open whether they are actually incomparable under Borel reductions.</p><p>Our proofs rely on the study of symmetric models whose symmetries come from the group <em>Q</em>. We show that when <em>Q</em> is “locally finite”—e.g. when <span><math><mi>Q</mi><mo>=</mo><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, where <span><math><mi>M</mi></math></span> is the Fraïssé limit of a Fraïssé class satisfying the disjoint amalgamation property—the corresponding symmetric model admits a theory of supports which is analogous to that in the basic Cohen model.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 5\",\"pages\":\"Article 103412\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000095\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Strong ergodicity phenomena for Bernoulli shifts of bounded algebraic dimension
The algebraic dimension of a Polish permutation group is the size of the largest with the property that the orbit of every under the pointwise stabilizer of is infinite. We study the Bernoulli shift for various Polish permutation groups P and we provide criteria under which the P-shift is generically ergodic relative to the injective part of the Q-shift, when Q has algebraic dimension ≤n. We use this to show that the sequence of pairwise ⁎-reduction-incomparable equivalence relations defined in [18] is a strictly increasing sequence in the Borel reduction hierarchy. We also use our main theorem to exhibit an equivalence relation of pinned cardinal which strongly resembles the equivalence relation of pinned cardinal from [25], but which does not Borel reduce to the latter. It remains open whether they are actually incomparable under Borel reductions.
Our proofs rely on the study of symmetric models whose symmetries come from the group Q. We show that when Q is “locally finite”—e.g. when , where is the Fraïssé limit of a Fraïssé class satisfying the disjoint amalgamation property—the corresponding symmetric model admits a theory of supports which is analogous to that in the basic Cohen model.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.