大规模密集系统上的随机卡兹马兹算法并行化策略

Inês Ferreira, Juan A. Acebrón, José Monteiro
{"title":"大规模密集系统上的随机卡兹马兹算法并行化策略","authors":"Inês Ferreira, Juan A. Acebrón, José Monteiro","doi":"arxiv-2401.17474","DOIUrl":null,"url":null,"abstract":"The Kaczmarz algorithm is an iterative technique designed to solve consistent\nlinear systems of equations. It falls within the category of row-action\nmethods, focusing on handling one equation per iteration. This characteristic\nmakes it especially useful in solving very large systems. The recent\nintroduction of a randomized version, the Randomized Kaczmarz method, renewed\ninterest in the algorithm, leading to the development of numerous variations.\nSubsequently, parallel implementations for both the original and Randomized\nKaczmarz method have since then been proposed. However, previous work has\naddressed sparse linear systems, whereas we focus on solving dense systems. In\nthis paper, we explore in detail approaches to parallelizing the Kaczmarz\nmethod for both shared and distributed memory for large dense systems. In\nparticular, we implemented the Randomized Kaczmarz with Averaging (RKA) method\nthat, for inconsistent systems, unlike the standard Randomized Kaczmarz\nalgorithm, reduces the final error of the solution. While efficient\nparallelization of this algorithm is not achievable, we introduce a block\nversion of the averaging method that can outperform the RKA method.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallelization Strategies for the Randomized Kaczmarz Algorithm on Large-Scale Dense Systems\",\"authors\":\"Inês Ferreira, Juan A. Acebrón, José Monteiro\",\"doi\":\"arxiv-2401.17474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kaczmarz algorithm is an iterative technique designed to solve consistent\\nlinear systems of equations. It falls within the category of row-action\\nmethods, focusing on handling one equation per iteration. This characteristic\\nmakes it especially useful in solving very large systems. The recent\\nintroduction of a randomized version, the Randomized Kaczmarz method, renewed\\ninterest in the algorithm, leading to the development of numerous variations.\\nSubsequently, parallel implementations for both the original and Randomized\\nKaczmarz method have since then been proposed. However, previous work has\\naddressed sparse linear systems, whereas we focus on solving dense systems. In\\nthis paper, we explore in detail approaches to parallelizing the Kaczmarz\\nmethod for both shared and distributed memory for large dense systems. In\\nparticular, we implemented the Randomized Kaczmarz with Averaging (RKA) method\\nthat, for inconsistent systems, unlike the standard Randomized Kaczmarz\\nalgorithm, reduces the final error of the solution. While efficient\\nparallelization of this algorithm is not achievable, we introduce a block\\nversion of the averaging method that can outperform the RKA method.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.17474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.17474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Kaczmarz 算法是一种旨在求解一致线性方程组的迭代技术。它属于行作用法,每次迭代只处理一个方程。这一特点使它在求解超大系统时特别有用。最近推出的随机化版本,即随机化 Kaczmarz 方法,再次引起了人们对该算法的兴趣,并开发出许多变体。不过,以前的工作都是解决稀疏线性系统,而我们则专注于求解密集系统。在本文中,我们详细探讨了针对大型密集系统的共享内存和分布式内存的 Kaczmarz 方法并行化方法。特别是,我们实现了随机 Kaczmarz 与平均(RKA)方法,对于不一致系统,与标准随机 Kaczmarz 算法不同的是,该方法减少了求解的最终误差。虽然无法实现该算法的高效并行化,但我们引入了平均法的分块版本,其性能优于 RKA 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization Strategies for the Randomized Kaczmarz Algorithm on Large-Scale Dense Systems
The Kaczmarz algorithm is an iterative technique designed to solve consistent linear systems of equations. It falls within the category of row-action methods, focusing on handling one equation per iteration. This characteristic makes it especially useful in solving very large systems. The recent introduction of a randomized version, the Randomized Kaczmarz method, renewed interest in the algorithm, leading to the development of numerous variations. Subsequently, parallel implementations for both the original and Randomized Kaczmarz method have since then been proposed. However, previous work has addressed sparse linear systems, whereas we focus on solving dense systems. In this paper, we explore in detail approaches to parallelizing the Kaczmarz method for both shared and distributed memory for large dense systems. In particular, we implemented the Randomized Kaczmarz with Averaging (RKA) method that, for inconsistent systems, unlike the standard Randomized Kaczmarz algorithm, reduces the final error of the solution. While efficient parallelization of this algorithm is not achievable, we introduce a block version of the averaging method that can outperform the RKA method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信