{"title":"通过积分观测确定随时间变化的有效离子碰撞频率","authors":"Kai Cao, Daniel Lesnic","doi":"10.1515/jiip-2023-0024","DOIUrl":null,"url":null,"abstract":"Identification of physical properties of materials is very important because they are in general unknown. Furthermore, their direct experimental measurement could be costly and inaccurate. In such a situation, a cheap and efficient alternative is to mathematically formulate an inverse, but difficult, problem that can be solved, in general, numerically; the challenge being that the problem is, in general, nonlinear and ill-posed. In this paper, the reconstruction of a lower-order unknown time-dependent coefficient in a Cahn–Hilliard-type fourth-order equation from an additional integral observation, which has application to characterizing the nonlinear saturation of the collisional trapped-ion mode in a tokamak, is investigated. The local existence and uniqueness of the solution to such inverse problem is established by utilizing the Rothe method. Moreover, the continuous dependence of the unknown coefficient upon the measured data is derived. Next, the Tikhonov regularization method is applied to recover the unknown coefficient from noisy measurements. The stability estimate of the minimizer is derived by investigating an auxiliary linear fourth-order inverse source problem. Henceforth, the variational source condition can be verified. Then the convergence rate is obtained under such source condition.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the time-dependent effective ion collision frequency from an integral observation\",\"authors\":\"Kai Cao, Daniel Lesnic\",\"doi\":\"10.1515/jiip-2023-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of physical properties of materials is very important because they are in general unknown. Furthermore, their direct experimental measurement could be costly and inaccurate. In such a situation, a cheap and efficient alternative is to mathematically formulate an inverse, but difficult, problem that can be solved, in general, numerically; the challenge being that the problem is, in general, nonlinear and ill-posed. In this paper, the reconstruction of a lower-order unknown time-dependent coefficient in a Cahn–Hilliard-type fourth-order equation from an additional integral observation, which has application to characterizing the nonlinear saturation of the collisional trapped-ion mode in a tokamak, is investigated. The local existence and uniqueness of the solution to such inverse problem is established by utilizing the Rothe method. Moreover, the continuous dependence of the unknown coefficient upon the measured data is derived. Next, the Tikhonov regularization method is applied to recover the unknown coefficient from noisy measurements. The stability estimate of the minimizer is derived by investigating an auxiliary linear fourth-order inverse source problem. Henceforth, the variational source condition can be verified. Then the convergence rate is obtained under such source condition.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0024\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Determination of the time-dependent effective ion collision frequency from an integral observation
Identification of physical properties of materials is very important because they are in general unknown. Furthermore, their direct experimental measurement could be costly and inaccurate. In such a situation, a cheap and efficient alternative is to mathematically formulate an inverse, but difficult, problem that can be solved, in general, numerically; the challenge being that the problem is, in general, nonlinear and ill-posed. In this paper, the reconstruction of a lower-order unknown time-dependent coefficient in a Cahn–Hilliard-type fourth-order equation from an additional integral observation, which has application to characterizing the nonlinear saturation of the collisional trapped-ion mode in a tokamak, is investigated. The local existence and uniqueness of the solution to such inverse problem is established by utilizing the Rothe method. Moreover, the continuous dependence of the unknown coefficient upon the measured data is derived. Next, the Tikhonov regularization method is applied to recover the unknown coefficient from noisy measurements. The stability estimate of the minimizer is derived by investigating an auxiliary linear fourth-order inverse source problem. Henceforth, the variational source condition can be verified. Then the convergence rate is obtained under such source condition.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography