{"title":"平衡中的曲率:韦尔函数和 $4$-manifolds 的标量曲率","authors":"Claude LeBrun","doi":"10.4310/pamq.2023.v19.n6.a5","DOIUrl":null,"url":null,"abstract":"The infimum of the Weyl functional is shown to be surprisingly small on many compact $4$-manifolds that admit positive-scalar-curvature metrics. Results are also proved that systematically compare the scalar and self-dual Weyl curvatures of certain almost-Kähler $4$-manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature in the balance: the Weyl functional and scalar curvature of $4$-manifolds\",\"authors\":\"Claude LeBrun\",\"doi\":\"10.4310/pamq.2023.v19.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infimum of the Weyl functional is shown to be surprisingly small on many compact $4$-manifolds that admit positive-scalar-curvature metrics. Results are also proved that systematically compare the scalar and self-dual Weyl curvatures of certain almost-Kähler $4$-manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n6.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Curvature in the balance: the Weyl functional and scalar curvature of $4$-manifolds
The infimum of the Weyl functional is shown to be surprisingly small on many compact $4$-manifolds that admit positive-scalar-curvature metrics. Results are also proved that systematically compare the scalar and self-dual Weyl curvatures of certain almost-Kähler $4$-manifolds.