{"title":"哈达玛流形上多目标半无限编程问题的效率条件和对偶性","authors":"Balendu Bhooshan Upadhyay, Arnav Ghosh, Savin Treanţă","doi":"10.1007/s10898-024-01367-3","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to the study of a class of multiobjective semi-infinite programming problems on Hadamard manifolds (in short, (MOSIP-HM)). We derive some alternative theorems analogous to Tucker’s theorem, Tucker’s first and second existence theorem, and Motzkin’s theorem of alternative in the framework of Hadamard manifolds. We employ Motzkin’s theorem of alternative to establish necessary and sufficient conditions that characterize KKT pseudoconvex functions using strong KKT vector critical points and efficient solutions of (MOSIP-HM). Moreover, we formulate the Mond-Weir and Wolfe-type dual problems related to (MOSIP-HM) and derive the weak and converse duality theorems relating (MOSIP-HM) and the dual problems. Several non-trivial numerical examples are provided to illustrate the significance of the derived results. The results deduced in the paper extend and generalize several notable works existing in the literature.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds\",\"authors\":\"Balendu Bhooshan Upadhyay, Arnav Ghosh, Savin Treanţă\",\"doi\":\"10.1007/s10898-024-01367-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is devoted to the study of a class of multiobjective semi-infinite programming problems on Hadamard manifolds (in short, (MOSIP-HM)). We derive some alternative theorems analogous to Tucker’s theorem, Tucker’s first and second existence theorem, and Motzkin’s theorem of alternative in the framework of Hadamard manifolds. We employ Motzkin’s theorem of alternative to establish necessary and sufficient conditions that characterize KKT pseudoconvex functions using strong KKT vector critical points and efficient solutions of (MOSIP-HM). Moreover, we formulate the Mond-Weir and Wolfe-type dual problems related to (MOSIP-HM) and derive the weak and converse duality theorems relating (MOSIP-HM) and the dual problems. Several non-trivial numerical examples are provided to illustrate the significance of the derived results. The results deduced in the paper extend and generalize several notable works existing in the literature.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01367-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01367-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds
This paper is devoted to the study of a class of multiobjective semi-infinite programming problems on Hadamard manifolds (in short, (MOSIP-HM)). We derive some alternative theorems analogous to Tucker’s theorem, Tucker’s first and second existence theorem, and Motzkin’s theorem of alternative in the framework of Hadamard manifolds. We employ Motzkin’s theorem of alternative to establish necessary and sufficient conditions that characterize KKT pseudoconvex functions using strong KKT vector critical points and efficient solutions of (MOSIP-HM). Moreover, we formulate the Mond-Weir and Wolfe-type dual problems related to (MOSIP-HM) and derive the weak and converse duality theorems relating (MOSIP-HM) and the dual problems. Several non-trivial numerical examples are provided to illustrate the significance of the derived results. The results deduced in the paper extend and generalize several notable works existing in the literature.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.