{"title":"关于定标和李群的评论","authors":"Nigel Hitchin","doi":"10.4310/pamq.2023.v19.n6.a2","DOIUrl":null,"url":null,"abstract":"We use the notion of the principal three-dimensional subgroup of a simple Lie group to identify certain special subspaces of the Lie algebra and address the question of whether these are calibrated for invariant forms on the group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on calibrations and Lie groups\",\"authors\":\"Nigel Hitchin\",\"doi\":\"10.4310/pamq.2023.v19.n6.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the notion of the principal three-dimensional subgroup of a simple Lie group to identify certain special subspaces of the Lie algebra and address the question of whether these are calibrated for invariant forms on the group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n6.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We use the notion of the principal three-dimensional subgroup of a simple Lie group to identify certain special subspaces of the Lie algebra and address the question of whether these are calibrated for invariant forms on the group.