{"title":"具有时空一致性的运动启发实时服装合成","authors":"","doi":"10.1007/s11390-022-1887-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Synthesizing garment dynamics according to body motions is a vital technique in computer graphics. Physics-based simulation depends on an accurate model of the law of kinetics of cloth, which is time-consuming, hard to implement, and complex to control. Existing data-driven approaches either lack temporal consistency, or fail to handle garments that are different from body topology. In this paper, we present a motion-inspired real-time garment synthesis workflow that enables high-level control of garment shape. Given a sequence of body motions, our workflow is able to generate corresponding garment dynamics with both spatial and temporal coherence. To that end, we develop a transformerbased garment synthesis network to learn the mapping from body motions to garment dynamics. Frame-level attention is employed to capture the dependency of garments and body motions. Moreover, a post-processing procedure is further taken to perform penetration removal and auto-texturing. Then, textured clothing animation that is collision-free and temporally-consistent is generated. We quantitatively and qualitatively evaluated our proposed workflow from different aspects. Extensive experiments demonstrate that our network is able to deliver clothing dynamics which retain the wrinkles from the physics-based simulation, while running 1 000 times faster. Besides, our workflow achieved superior synthesis performance compared with alternative approaches. To stimulate further research in this direction, our code will be publicly available soon.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion-Inspired Real-Time Garment Synthesis with Temporal-Consistency\",\"authors\":\"\",\"doi\":\"10.1007/s11390-022-1887-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Synthesizing garment dynamics according to body motions is a vital technique in computer graphics. Physics-based simulation depends on an accurate model of the law of kinetics of cloth, which is time-consuming, hard to implement, and complex to control. Existing data-driven approaches either lack temporal consistency, or fail to handle garments that are different from body topology. In this paper, we present a motion-inspired real-time garment synthesis workflow that enables high-level control of garment shape. Given a sequence of body motions, our workflow is able to generate corresponding garment dynamics with both spatial and temporal coherence. To that end, we develop a transformerbased garment synthesis network to learn the mapping from body motions to garment dynamics. Frame-level attention is employed to capture the dependency of garments and body motions. Moreover, a post-processing procedure is further taken to perform penetration removal and auto-texturing. Then, textured clothing animation that is collision-free and temporally-consistent is generated. We quantitatively and qualitatively evaluated our proposed workflow from different aspects. Extensive experiments demonstrate that our network is able to deliver clothing dynamics which retain the wrinkles from the physics-based simulation, while running 1 000 times faster. Besides, our workflow achieved superior synthesis performance compared with alternative approaches. To stimulate further research in this direction, our code will be publicly available soon.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-022-1887-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-022-1887-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Motion-Inspired Real-Time Garment Synthesis with Temporal-Consistency
Abstract
Synthesizing garment dynamics according to body motions is a vital technique in computer graphics. Physics-based simulation depends on an accurate model of the law of kinetics of cloth, which is time-consuming, hard to implement, and complex to control. Existing data-driven approaches either lack temporal consistency, or fail to handle garments that are different from body topology. In this paper, we present a motion-inspired real-time garment synthesis workflow that enables high-level control of garment shape. Given a sequence of body motions, our workflow is able to generate corresponding garment dynamics with both spatial and temporal coherence. To that end, we develop a transformerbased garment synthesis network to learn the mapping from body motions to garment dynamics. Frame-level attention is employed to capture the dependency of garments and body motions. Moreover, a post-processing procedure is further taken to perform penetration removal and auto-texturing. Then, textured clothing animation that is collision-free and temporally-consistent is generated. We quantitatively and qualitatively evaluated our proposed workflow from different aspects. Extensive experiments demonstrate that our network is able to deliver clothing dynamics which retain the wrinkles from the physics-based simulation, while running 1 000 times faster. Besides, our workflow achieved superior synthesis performance compared with alternative approaches. To stimulate further research in this direction, our code will be publicly available soon.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas