{"title":"覆盖复杂性、标量曲率和定量 $K$ 理论","authors":"Hao Guo, Guoliang Yu","doi":"10.4310/pamq.2023.v19.n6.a13","DOIUrl":null,"url":null,"abstract":"We establish a relationship between a certain notion of covering complexity of a Riemannian spin manifold and positive lower bounds on its scalar curvature. This makes use of a pairing between quantitative operator $K$-theory and Lipschitz topological $K$-theory, combined with an earlier vanishing theorem for the quantitative higher index.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"38 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covering complexity, scalar curvature, and quantitative $K$-theory\",\"authors\":\"Hao Guo, Guoliang Yu\",\"doi\":\"10.4310/pamq.2023.v19.n6.a13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a relationship between a certain notion of covering complexity of a Riemannian spin manifold and positive lower bounds on its scalar curvature. This makes use of a pairing between quantitative operator $K$-theory and Lipschitz topological $K$-theory, combined with an earlier vanishing theorem for the quantitative higher index.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n6.a13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Covering complexity, scalar curvature, and quantitative $K$-theory
We establish a relationship between a certain notion of covering complexity of a Riemannian spin manifold and positive lower bounds on its scalar curvature. This makes use of a pairing between quantitative operator $K$-theory and Lipschitz topological $K$-theory, combined with an earlier vanishing theorem for the quantitative higher index.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.