{"title":"自动生成目标描述文件","authors":"","doi":"10.1007/s11390-022-1919-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Agile hardware design is gaining increasing momentum and bringing new chips in larger quantities to the market faster. However, it also takes new challenges for compiler developers to retarget existing compilers to these new chips in shorter time than ever before. Currently, retargeting a compiler backend, e.g., an LLVM backend to a new target, requires compiler developers to write manually a set of target description files (totalling 10 300+ lines of code (LOC) for RISC-V in LLVM), which is error-prone and time-consuming. In this paper, we introduce a new approach, Automatic Target Description File Generation (ATG), which accelerates the generation of a compiler backend for a new target by generating its target description files automatically. Given a new target, ATG proceeds in two stages. First, ATG synthesizes a small list of target-specific properties and a list of code-layout templates from the target description files of a set of existing targets with similar instruction set architectures (ISAs). Second, ATG requests compiler developers to fill in the information for each instruction in the new target in tabular form according to the list of target-specific properties synthesized and then generates its target description files automatically according to the list of code-layout templates synthesized. The first stage can often be reused by different new targets sharing similar ISAs. We evaluate ATG using nine RISC-V instruction sets drawn from a total of 1 029 instructions in LLVM 12.0. ATG enables compiler developers to generate compiler backends for these ISAs that emit the same assembly code as the existing compiler backends for RISC-V but with significantly less development effort (by specifying each instruction in terms of up to 61 target-specific properties only).</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"155-156 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Target Description File Generation\",\"authors\":\"\",\"doi\":\"10.1007/s11390-022-1919-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Agile hardware design is gaining increasing momentum and bringing new chips in larger quantities to the market faster. However, it also takes new challenges for compiler developers to retarget existing compilers to these new chips in shorter time than ever before. Currently, retargeting a compiler backend, e.g., an LLVM backend to a new target, requires compiler developers to write manually a set of target description files (totalling 10 300+ lines of code (LOC) for RISC-V in LLVM), which is error-prone and time-consuming. In this paper, we introduce a new approach, Automatic Target Description File Generation (ATG), which accelerates the generation of a compiler backend for a new target by generating its target description files automatically. Given a new target, ATG proceeds in two stages. First, ATG synthesizes a small list of target-specific properties and a list of code-layout templates from the target description files of a set of existing targets with similar instruction set architectures (ISAs). Second, ATG requests compiler developers to fill in the information for each instruction in the new target in tabular form according to the list of target-specific properties synthesized and then generates its target description files automatically according to the list of code-layout templates synthesized. The first stage can often be reused by different new targets sharing similar ISAs. We evaluate ATG using nine RISC-V instruction sets drawn from a total of 1 029 instructions in LLVM 12.0. ATG enables compiler developers to generate compiler backends for these ISAs that emit the same assembly code as the existing compiler backends for RISC-V but with significantly less development effort (by specifying each instruction in terms of up to 61 target-specific properties only).</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"155-156 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-022-1919-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-022-1919-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Agile hardware design is gaining increasing momentum and bringing new chips in larger quantities to the market faster. However, it also takes new challenges for compiler developers to retarget existing compilers to these new chips in shorter time than ever before. Currently, retargeting a compiler backend, e.g., an LLVM backend to a new target, requires compiler developers to write manually a set of target description files (totalling 10 300+ lines of code (LOC) for RISC-V in LLVM), which is error-prone and time-consuming. In this paper, we introduce a new approach, Automatic Target Description File Generation (ATG), which accelerates the generation of a compiler backend for a new target by generating its target description files automatically. Given a new target, ATG proceeds in two stages. First, ATG synthesizes a small list of target-specific properties and a list of code-layout templates from the target description files of a set of existing targets with similar instruction set architectures (ISAs). Second, ATG requests compiler developers to fill in the information for each instruction in the new target in tabular form according to the list of target-specific properties synthesized and then generates its target description files automatically according to the list of code-layout templates synthesized. The first stage can often be reused by different new targets sharing similar ISAs. We evaluate ATG using nine RISC-V instruction sets drawn from a total of 1 029 instructions in LLVM 12.0. ATG enables compiler developers to generate compiler backends for these ISAs that emit the same assembly code as the existing compiler backends for RISC-V but with significantly less development effort (by specifying each instruction in terms of up to 61 target-specific properties only).
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas