关于同质封闭梯度拉普拉卡孤子

IF 0.6 4区 数学 Q3 MATHEMATICS
Nicholas Ng
{"title":"关于同质封闭梯度拉普拉卡孤子","authors":"Nicholas Ng","doi":"10.1016/j.difgeo.2024.102108","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a structure theorem for homogeneous closed gradient Laplacian solitons and use it to show some examples of closed Laplacian solitons cannot be made gradient. More specifically, we show that the Laplacian solitons on nilpotent Lie groups found by Nicolini are not gradient up to homothetic <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures except for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span>, where the potential function must be of a certain form. We also show that one of the closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures constructed by Fernández-Fino-Manero cannot be a gradient soliton. We then examine the structure of almost abelian solvmanifolds admitting closed non-torsion-free gradient Laplacian solitons.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102108"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On homogeneous closed gradient Laplacian solitons\",\"authors\":\"Nicholas Ng\",\"doi\":\"10.1016/j.difgeo.2024.102108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a structure theorem for homogeneous closed gradient Laplacian solitons and use it to show some examples of closed Laplacian solitons cannot be made gradient. More specifically, we show that the Laplacian solitons on nilpotent Lie groups found by Nicolini are not gradient up to homothetic <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures except for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span>, where the potential function must be of a certain form. We also show that one of the closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures constructed by Fernández-Fino-Manero cannot be a gradient soliton. We then examine the structure of almost abelian solvmanifolds admitting closed non-torsion-free gradient Laplacian solitons.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"93 \",\"pages\":\"Article 102108\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了同质封闭梯度拉普拉斯孤子的结构定理,并用它证明了一些封闭拉普拉斯孤子无法形成梯度的例子。更具体地说,我们证明了尼科里尼发现的零potent Lie 群上的拉普拉斯孤子在同质 G2 结构上是没有梯度的,除了 R7,在 R7 中势函数必须是某种形式。我们还证明,费尔南德斯-菲诺-马内罗构建的封闭 G2 结构之一不可能是梯度孤子。然后,我们研究了几乎无差 solvmanifolds 的结构,其中包含封闭的非无扭梯度拉普拉奇孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On homogeneous closed gradient Laplacian solitons

We prove a structure theorem for homogeneous closed gradient Laplacian solitons and use it to show some examples of closed Laplacian solitons cannot be made gradient. More specifically, we show that the Laplacian solitons on nilpotent Lie groups found by Nicolini are not gradient up to homothetic G2-structures except for R7, where the potential function must be of a certain form. We also show that one of the closed G2-structures constructed by Fernández-Fino-Manero cannot be a gradient soliton. We then examine the structure of almost abelian solvmanifolds admitting closed non-torsion-free gradient Laplacian solitons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信