具有孔隙率相关渗透性的 Biot 孔弹性的新双重鞍点公式

IF 1.4 Q2 MATHEMATICS, APPLIED
Bishnu P. Lamichhane , Ricardo Ruiz-Baier , Segundo Villa-Fuentes
{"title":"具有孔隙率相关渗透性的 Biot 孔弹性的新双重鞍点公式","authors":"Bishnu P. Lamichhane ,&nbsp;Ricardo Ruiz-Baier ,&nbsp;Segundo Villa-Fuentes","doi":"10.1016/j.rinam.2024.100438","DOIUrl":null,"url":null,"abstract":"<div><p>We propose four-field and five-field Hu–Washizu-type mixed formulations for nonlinear poroelasticity – a coupled fluid diffusion and solid deformation process – considering that the permeability depends on a linear combination between fluid pressure and dilation. As the determination of the physical strains is necessary, the first formulation is written in terms of the primal unknowns of solid displacement and pore fluid pressure as well as the poroelastic stress and the infinitesimal strain, and it considers strongly symmetric Cauchy stresses. The second formulation imposes stress symmetry in a weak sense and it requires the additional unknown of solid rotation tensor. We study the unique solvability of the problem using the Banach fixed-point theory, properties of twofold saddle-point problems, and the Banach–Nečas–Babuška theory. We propose monolithic Galerkin discretisations based on conforming Arnold–Winther for poroelastic stress and displacement, and either PEERS or Arnold–Falk–Winther finite element families for the stress–displacement-rotation field variables. The wellposedness of the discrete problem is established as well, and we show a priori error estimates in the natural norms. Some numerical examples are provided to confirm the rates of convergence predicted by the theory, and we also illustrate the use of the formulation in some typical tests in Biot poroelasticity.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100438"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000086/pdfft?md5=8e526e08d6ea702ad09b2224d6272e52&pid=1-s2.0-S2590037424000086-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New twofold saddle-point formulations for Biot poroelasticity with porosity-dependent permeability\",\"authors\":\"Bishnu P. Lamichhane ,&nbsp;Ricardo Ruiz-Baier ,&nbsp;Segundo Villa-Fuentes\",\"doi\":\"10.1016/j.rinam.2024.100438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose four-field and five-field Hu–Washizu-type mixed formulations for nonlinear poroelasticity – a coupled fluid diffusion and solid deformation process – considering that the permeability depends on a linear combination between fluid pressure and dilation. As the determination of the physical strains is necessary, the first formulation is written in terms of the primal unknowns of solid displacement and pore fluid pressure as well as the poroelastic stress and the infinitesimal strain, and it considers strongly symmetric Cauchy stresses. The second formulation imposes stress symmetry in a weak sense and it requires the additional unknown of solid rotation tensor. We study the unique solvability of the problem using the Banach fixed-point theory, properties of twofold saddle-point problems, and the Banach–Nečas–Babuška theory. We propose monolithic Galerkin discretisations based on conforming Arnold–Winther for poroelastic stress and displacement, and either PEERS or Arnold–Falk–Winther finite element families for the stress–displacement-rotation field variables. The wellposedness of the discrete problem is established as well, and we show a priori error estimates in the natural norms. Some numerical examples are provided to confirm the rates of convergence predicted by the theory, and we also illustrate the use of the formulation in some typical tests in Biot poroelasticity.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100438\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000086/pdfft?md5=8e526e08d6ea702ad09b2224d6272e52&pid=1-s2.0-S2590037424000086-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑到渗透率取决于流体压力和扩张之间的线性组合,我们提出了非线性孔弹性--流体扩散和固体变形耦合过程--的四场和五场 Hu-Washizu 型混合公式。由于物理应变的确定是必要的,因此第一种公式是以固体位移和孔隙流体压力以及孔弹性应力和无穷小应变等原始未知量来编写的,并考虑了强对称考氏应力。第二种公式在弱意义上实现了应力对称,并且需要额外的固体旋转张量未知量。我们利用巴拿赫定点理论、二重鞍点问题的特性和巴拿赫-奈卡斯-巴布什卡理论研究了问题的唯一可解性。我们提出了基于符合阿诺德-温特(Arnold-Winther)的单片伽勒金离散法来计算孔弹性应力和位移,以及 PEERS 或 Arnold-Falk-Winther 有限元族来计算应力-位移-旋转场变量。我们还确定了离散问题的好拟性,并展示了自然规范中的先验误差估计。我们还提供了一些数值示例来证实理论预测的收敛速率,并说明了该公式在一些典型的 Biot 孔弹性试验中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New twofold saddle-point formulations for Biot poroelasticity with porosity-dependent permeability

We propose four-field and five-field Hu–Washizu-type mixed formulations for nonlinear poroelasticity – a coupled fluid diffusion and solid deformation process – considering that the permeability depends on a linear combination between fluid pressure and dilation. As the determination of the physical strains is necessary, the first formulation is written in terms of the primal unknowns of solid displacement and pore fluid pressure as well as the poroelastic stress and the infinitesimal strain, and it considers strongly symmetric Cauchy stresses. The second formulation imposes stress symmetry in a weak sense and it requires the additional unknown of solid rotation tensor. We study the unique solvability of the problem using the Banach fixed-point theory, properties of twofold saddle-point problems, and the Banach–Nečas–Babuška theory. We propose monolithic Galerkin discretisations based on conforming Arnold–Winther for poroelastic stress and displacement, and either PEERS or Arnold–Falk–Winther finite element families for the stress–displacement-rotation field variables. The wellposedness of the discrete problem is established as well, and we show a priori error estimates in the natural norms. Some numerical examples are provided to confirm the rates of convergence predicted by the theory, and we also illustrate the use of the formulation in some typical tests in Biot poroelasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信