利用深度 LSTM 对高光谱图像进行土地利用/土地覆被 (LULC) 分类

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ganji Tejasree, L. Agilandeeswari
{"title":"利用深度 LSTM 对高光谱图像进行土地利用/土地覆被 (LULC) 分类","authors":"Ganji Tejasree,&nbsp;L. Agilandeeswari","doi":"10.1016/j.ejrs.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Land Use/Land Cover (LULC) classification using hyperspectral images in remote sensing is a leading technology. However, LULC classification using hyperspectral images is a difficult task and time-consuming process because it has fewer training samples. To overcome these issues, we proposed a deep-Long Short-Term Memory (deep-LSTM) to classify the LULC. Before classifying the LULC, extracting valuable features from an image is needed, and after extracting the features, selecting the bands which are helpful for classification should be done. In this work, we have proposed an auto-encoder model for feature extraction, a ranking-based band selection model to select the bands, and deep-LSTM for classification. We have used three publicly available benchmark datasets; they are Pavia University (PU), Kennedy Space Centre (KSC), and Indian Pines (IP). Average Accuracy (AA), Overall Accuracy (OA), and Kappa Coefficient (KC) are used to measure the classification accuracy. The suggested technique has provided the top outcomes compared to the other state-of-the-art methods.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000048/pdfft?md5=b376a16344b9c0c5982a335de34305d3&pid=1-s2.0-S1110982324000048-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images\",\"authors\":\"Ganji Tejasree,&nbsp;L. Agilandeeswari\",\"doi\":\"10.1016/j.ejrs.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Land Use/Land Cover (LULC) classification using hyperspectral images in remote sensing is a leading technology. However, LULC classification using hyperspectral images is a difficult task and time-consuming process because it has fewer training samples. To overcome these issues, we proposed a deep-Long Short-Term Memory (deep-LSTM) to classify the LULC. Before classifying the LULC, extracting valuable features from an image is needed, and after extracting the features, selecting the bands which are helpful for classification should be done. In this work, we have proposed an auto-encoder model for feature extraction, a ranking-based band selection model to select the bands, and deep-LSTM for classification. We have used three publicly available benchmark datasets; they are Pavia University (PU), Kennedy Space Centre (KSC), and Indian Pines (IP). Average Accuracy (AA), Overall Accuracy (OA), and Kappa Coefficient (KC) are used to measure the classification accuracy. The suggested technique has provided the top outcomes compared to the other state-of-the-art methods.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000048/pdfft?md5=b376a16344b9c0c5982a335de34305d3&pid=1-s2.0-S1110982324000048-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000048\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用遥感高光谱图像进行土地利用/土地覆盖(LULC)分类是一项领先技术。然而,由于训练样本较少,利用高光谱图像进行土地利用/土地覆盖分类是一项艰巨的任务,而且耗时较长。为了克服这些问题,我们提出了一种深度长短期记忆(deep-LSTM)来对 LULC 进行分类。在对 LULC 进行分类之前,需要从图像中提取有价值的特征,而在提取特征之后,还需要选择有助于分类的波段。在这项工作中,我们提出了一种用于特征提取的自动编码器模型、一种用于选择波段的基于排序的波段选择模型,以及一种用于分类的深度 LSTM。我们使用了三个公开的基准数据集,它们分别是帕维亚大学(PU)、肯尼迪航天中心(KSC)和印度松林(IP)。平均准确率(AA)、总体准确率(OA)和卡帕系数(KC)被用来衡量分类准确性。与其他最先进的方法相比,所建议的技术提供了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images

Land Use/Land Cover (LULC) classification using hyperspectral images in remote sensing is a leading technology. However, LULC classification using hyperspectral images is a difficult task and time-consuming process because it has fewer training samples. To overcome these issues, we proposed a deep-Long Short-Term Memory (deep-LSTM) to classify the LULC. Before classifying the LULC, extracting valuable features from an image is needed, and after extracting the features, selecting the bands which are helpful for classification should be done. In this work, we have proposed an auto-encoder model for feature extraction, a ranking-based band selection model to select the bands, and deep-LSTM for classification. We have used three publicly available benchmark datasets; they are Pavia University (PU), Kennedy Space Centre (KSC), and Indian Pines (IP). Average Accuracy (AA), Overall Accuracy (OA), and Kappa Coefficient (KC) are used to measure the classification accuracy. The suggested technique has provided the top outcomes compared to the other state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信