{"title":"当样本不是在理想条件下运输和处理时,血浆氨结果的可接受性。","authors":"Ann Bowron, Victoria Osgood","doi":"10.1177/00045632241232931","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is recommended that samples for plasma ammonia analysis are kept chilled and processed promptly as <i>in vitro</i> metabolism causes falsely elevated results. Rejection of unsuitable samples can cause delayed diagnosis and treatment of hyperammonaemia with potentially serious clinical consequences. The Metabolic Biochemistry Network (MetBioNet) hyperammonaemia guideline recommends analysis of samples not collected under ideal conditions and reporting with appropriate comments. An audit found that some laboratories did not follow this guidance. An investigation was performed into whether storage at controlled room temperature and delayed sample processing affected interpretation of plasma ammonia results.</p><p><strong>Methods: </strong>Eleven healthy volunteers provided informed consent. Blood was taken from each into 14 paediatric EDTA blood sample tubes, one placed immediately on ice, the others in a rack at room temperature. The chilled and baseline room temperature samples were centrifuged and plasma analysed by the Roche Ammonia (NH3L2) method. Samples stored at room temperature were analysed at 10-min intervals up to 2 h.</p><p><strong>Results: </strong>Baseline room temperature ammonia was higher than in the chilled sample (19 ± 6.6 µmol/L [mean ± standard deviation] and 18 ± 6.6 µmol/L, respectively). Ammonia increased further by 0.09 ± 0.02 µmol/L per minute to 30 ± 8.4 µmol/L at 2 h. No result was above the reference range (50 µmol/L). No healthy subject with normal baseline ammonia would have been erroneously identified as having hyperammonaemia.</p><p><strong>Conclusions: </strong>Results support MetBioNet guidance that laboratories accept blood samples for ammonia analysis which are not processed under ideal conditions.</p>","PeriodicalId":8005,"journal":{"name":"Annals of Clinical Biochemistry","volume":" ","pages":"230-232"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceptability of plasma ammonia results when samples are not transported and processed under ideal conditions.\",\"authors\":\"Ann Bowron, Victoria Osgood\",\"doi\":\"10.1177/00045632241232931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It is recommended that samples for plasma ammonia analysis are kept chilled and processed promptly as <i>in vitro</i> metabolism causes falsely elevated results. Rejection of unsuitable samples can cause delayed diagnosis and treatment of hyperammonaemia with potentially serious clinical consequences. The Metabolic Biochemistry Network (MetBioNet) hyperammonaemia guideline recommends analysis of samples not collected under ideal conditions and reporting with appropriate comments. An audit found that some laboratories did not follow this guidance. An investigation was performed into whether storage at controlled room temperature and delayed sample processing affected interpretation of plasma ammonia results.</p><p><strong>Methods: </strong>Eleven healthy volunteers provided informed consent. Blood was taken from each into 14 paediatric EDTA blood sample tubes, one placed immediately on ice, the others in a rack at room temperature. The chilled and baseline room temperature samples were centrifuged and plasma analysed by the Roche Ammonia (NH3L2) method. Samples stored at room temperature were analysed at 10-min intervals up to 2 h.</p><p><strong>Results: </strong>Baseline room temperature ammonia was higher than in the chilled sample (19 ± 6.6 µmol/L [mean ± standard deviation] and 18 ± 6.6 µmol/L, respectively). Ammonia increased further by 0.09 ± 0.02 µmol/L per minute to 30 ± 8.4 µmol/L at 2 h. No result was above the reference range (50 µmol/L). No healthy subject with normal baseline ammonia would have been erroneously identified as having hyperammonaemia.</p><p><strong>Conclusions: </strong>Results support MetBioNet guidance that laboratories accept blood samples for ammonia analysis which are not processed under ideal conditions.</p>\",\"PeriodicalId\":8005,\"journal\":{\"name\":\"Annals of Clinical Biochemistry\",\"volume\":\" \",\"pages\":\"230-232\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00045632241232931\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00045632241232931","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Acceptability of plasma ammonia results when samples are not transported and processed under ideal conditions.
Background: It is recommended that samples for plasma ammonia analysis are kept chilled and processed promptly as in vitro metabolism causes falsely elevated results. Rejection of unsuitable samples can cause delayed diagnosis and treatment of hyperammonaemia with potentially serious clinical consequences. The Metabolic Biochemistry Network (MetBioNet) hyperammonaemia guideline recommends analysis of samples not collected under ideal conditions and reporting with appropriate comments. An audit found that some laboratories did not follow this guidance. An investigation was performed into whether storage at controlled room temperature and delayed sample processing affected interpretation of plasma ammonia results.
Methods: Eleven healthy volunteers provided informed consent. Blood was taken from each into 14 paediatric EDTA blood sample tubes, one placed immediately on ice, the others in a rack at room temperature. The chilled and baseline room temperature samples were centrifuged and plasma analysed by the Roche Ammonia (NH3L2) method. Samples stored at room temperature were analysed at 10-min intervals up to 2 h.
Results: Baseline room temperature ammonia was higher than in the chilled sample (19 ± 6.6 µmol/L [mean ± standard deviation] and 18 ± 6.6 µmol/L, respectively). Ammonia increased further by 0.09 ± 0.02 µmol/L per minute to 30 ± 8.4 µmol/L at 2 h. No result was above the reference range (50 µmol/L). No healthy subject with normal baseline ammonia would have been erroneously identified as having hyperammonaemia.
Conclusions: Results support MetBioNet guidance that laboratories accept blood samples for ammonia analysis which are not processed under ideal conditions.
期刊介绍:
Annals of Clinical Biochemistry is the fully peer reviewed international journal of the Association for Clinical Biochemistry and Laboratory Medicine.
Annals of Clinical Biochemistry accepts papers that contribute to knowledge in all fields of laboratory medicine, especially those pertaining to the understanding, diagnosis and treatment of human disease. It publishes papers on clinical biochemistry, clinical audit, metabolic medicine, immunology, genetics, biotechnology, haematology, microbiology, computing and management where they have both biochemical and clinical relevance. Papers describing evaluation or implementation of commercial reagent kits or the performance of new analysers require substantial original information. Unless of exceptional interest and novelty, studies dealing with the redox status in various diseases are not generally considered within the journal''s scope. Studies documenting the association of single nucleotide polymorphisms (SNPs) with particular phenotypes will not normally be considered, given the greater strength of genome wide association studies (GWAS). Research undertaken in non-human animals will not be considered for publication in the Annals.
Annals of Clinical Biochemistry is also the official journal of NVKC (de Nederlandse Vereniging voor Klinische Chemie) and JSCC (Japan Society of Clinical Chemistry).