Tianyu Liu, Chao Xu, Jiaqi Guo, Zile He, Yunpeng Zhang, Yi Feng
{"title":"三叉神经痛患者全血转录组分析:一项前瞻性临床研究","authors":"Tianyu Liu, Chao Xu, Jiaqi Guo, Zile He, Yunpeng Zhang, Yi Feng","doi":"10.1007/s12031-024-02195-6","DOIUrl":null,"url":null,"abstract":"<div><p>Trigeminal neuralgia (TN) brings a huge burden to patients, without long-term effective treatment. This study aimed to explore the differentially expressed genes (DEGs) and related enrichment pathways in patients with TN. This was a study of transcriptome sequencing and bioinformatics analysis of human samples. Whole blood samples were collected from the TN patients and pain-free controls. RNA was extracted to conduct the RNA-sequencing and the subsequent bioinformatics analysis. DEGs between the two groups were derived. Kyoto encyclopedia of genes and genomes (KEGG) and Gene ontology (GO) was used to find the enrichment pathways of DEGs. Protein protein interaction (PPI) network was used to depict the interaction between DEGs and find the most important gene, hub gene. Compared with the control group, there were 117 up-regulated DEGs and 103 down-regulated DEGs in the whole blood of patients in the TN group. Pathway enrichment analysis showed that DEGs were mainly enriched in the neuroimmune and metabolic pathways. The PPI network demonstrated that colony stimulating factor 2 (<i>CSF2</i>) was the most important hub gene in the whole blood of TN patients. This study shows the expression of the transcriptome in the whole blood samples of TN patients. The neuroimmune responses and key hub gene <i>CSF2</i> in the whole blood cells play a vital role in the occurrence of TN. Our research provides a theoretical basis for the diagnosis and treatments of TN. This study was registered at clinicaltrials.gov in June 2021 (No. NCT04923399).</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole Blood Transcriptome Analysis in Patients with Trigeminal Neuralgia: a Prospective Clinical Study\",\"authors\":\"Tianyu Liu, Chao Xu, Jiaqi Guo, Zile He, Yunpeng Zhang, Yi Feng\",\"doi\":\"10.1007/s12031-024-02195-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trigeminal neuralgia (TN) brings a huge burden to patients, without long-term effective treatment. This study aimed to explore the differentially expressed genes (DEGs) and related enrichment pathways in patients with TN. This was a study of transcriptome sequencing and bioinformatics analysis of human samples. Whole blood samples were collected from the TN patients and pain-free controls. RNA was extracted to conduct the RNA-sequencing and the subsequent bioinformatics analysis. DEGs between the two groups were derived. Kyoto encyclopedia of genes and genomes (KEGG) and Gene ontology (GO) was used to find the enrichment pathways of DEGs. Protein protein interaction (PPI) network was used to depict the interaction between DEGs and find the most important gene, hub gene. Compared with the control group, there were 117 up-regulated DEGs and 103 down-regulated DEGs in the whole blood of patients in the TN group. Pathway enrichment analysis showed that DEGs were mainly enriched in the neuroimmune and metabolic pathways. The PPI network demonstrated that colony stimulating factor 2 (<i>CSF2</i>) was the most important hub gene in the whole blood of TN patients. This study shows the expression of the transcriptome in the whole blood samples of TN patients. The neuroimmune responses and key hub gene <i>CSF2</i> in the whole blood cells play a vital role in the occurrence of TN. Our research provides a theoretical basis for the diagnosis and treatments of TN. This study was registered at clinicaltrials.gov in June 2021 (No. NCT04923399).</p></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-024-02195-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02195-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Whole Blood Transcriptome Analysis in Patients with Trigeminal Neuralgia: a Prospective Clinical Study
Trigeminal neuralgia (TN) brings a huge burden to patients, without long-term effective treatment. This study aimed to explore the differentially expressed genes (DEGs) and related enrichment pathways in patients with TN. This was a study of transcriptome sequencing and bioinformatics analysis of human samples. Whole blood samples were collected from the TN patients and pain-free controls. RNA was extracted to conduct the RNA-sequencing and the subsequent bioinformatics analysis. DEGs between the two groups were derived. Kyoto encyclopedia of genes and genomes (KEGG) and Gene ontology (GO) was used to find the enrichment pathways of DEGs. Protein protein interaction (PPI) network was used to depict the interaction between DEGs and find the most important gene, hub gene. Compared with the control group, there were 117 up-regulated DEGs and 103 down-regulated DEGs in the whole blood of patients in the TN group. Pathway enrichment analysis showed that DEGs were mainly enriched in the neuroimmune and metabolic pathways. The PPI network demonstrated that colony stimulating factor 2 (CSF2) was the most important hub gene in the whole blood of TN patients. This study shows the expression of the transcriptome in the whole blood samples of TN patients. The neuroimmune responses and key hub gene CSF2 in the whole blood cells play a vital role in the occurrence of TN. Our research provides a theoretical basis for the diagnosis and treatments of TN. This study was registered at clinicaltrials.gov in June 2021 (No. NCT04923399).
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.