{"title":"复杂场地盾构隧道水平冻结法现场测试","authors":"Mingyuan LI, Jianbo Wang, Xinjun Gao, Jianxin Bao","doi":"10.1007/s40999-023-00926-1","DOIUrl":null,"url":null,"abstract":"<p>To study the freezing characteristics and the effects of the horizontal freezing method of shield tunneling on the surrounding environment at a complex site, a systematic study with field measurements of the temperature and frost heave displacement fields of horizontal cup-type freezing was conducted on the south end shield tunneling of the Shuanghehu station of Zhengzhou metro line 17. The conclusions of the current research are: (1) the soil has a greater effect on freezing than the average moisture content of the soil layer. On the premise of a similar average moisture content, silt continues to cool at a faster rate after reaching the freezing point; (2) within the outer circle of the freezing tube, the rate of expansion of the freezing curtain decreases with distance from the freezing tube. The rates of development measured by the outer holes of the left and right line tests are 2.40 and 6.03 times those of the inner holes, respectively; (3) frost heave displacements are larger near the frozen area. The maximum frost heave in the frozen area is about 1.60–1.83 times that in the unfrozen area; (4) the temperature measurement holes in the left line fell below 0 °C 6 days later than the right line. The flow of groundwater has an adverse effect on the effect of freezing consolidation.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Tests of the Horizontal Freezing Method for Shield Tunneling in Complex Sites\",\"authors\":\"Mingyuan LI, Jianbo Wang, Xinjun Gao, Jianxin Bao\",\"doi\":\"10.1007/s40999-023-00926-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To study the freezing characteristics and the effects of the horizontal freezing method of shield tunneling on the surrounding environment at a complex site, a systematic study with field measurements of the temperature and frost heave displacement fields of horizontal cup-type freezing was conducted on the south end shield tunneling of the Shuanghehu station of Zhengzhou metro line 17. The conclusions of the current research are: (1) the soil has a greater effect on freezing than the average moisture content of the soil layer. On the premise of a similar average moisture content, silt continues to cool at a faster rate after reaching the freezing point; (2) within the outer circle of the freezing tube, the rate of expansion of the freezing curtain decreases with distance from the freezing tube. The rates of development measured by the outer holes of the left and right line tests are 2.40 and 6.03 times those of the inner holes, respectively; (3) frost heave displacements are larger near the frozen area. The maximum frost heave in the frozen area is about 1.60–1.83 times that in the unfrozen area; (4) the temperature measurement holes in the left line fell below 0 °C 6 days later than the right line. The flow of groundwater has an adverse effect on the effect of freezing consolidation.</p>\",\"PeriodicalId\":50331,\"journal\":{\"name\":\"International Journal of Civil Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40999-023-00926-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-023-00926-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Field Tests of the Horizontal Freezing Method for Shield Tunneling in Complex Sites
To study the freezing characteristics and the effects of the horizontal freezing method of shield tunneling on the surrounding environment at a complex site, a systematic study with field measurements of the temperature and frost heave displacement fields of horizontal cup-type freezing was conducted on the south end shield tunneling of the Shuanghehu station of Zhengzhou metro line 17. The conclusions of the current research are: (1) the soil has a greater effect on freezing than the average moisture content of the soil layer. On the premise of a similar average moisture content, silt continues to cool at a faster rate after reaching the freezing point; (2) within the outer circle of the freezing tube, the rate of expansion of the freezing curtain decreases with distance from the freezing tube. The rates of development measured by the outer holes of the left and right line tests are 2.40 and 6.03 times those of the inner holes, respectively; (3) frost heave displacements are larger near the frozen area. The maximum frost heave in the frozen area is about 1.60–1.83 times that in the unfrozen area; (4) the temperature measurement holes in the left line fell below 0 °C 6 days later than the right line. The flow of groundwater has an adverse effect on the effect of freezing consolidation.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.