光滑度量空间中的加权索博廖夫型不等式

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Pengyan Wang, Huiting Chang
{"title":"光滑度量空间中的加权索博廖夫型不等式","authors":"Pengyan Wang, Huiting Chang","doi":"10.1007/s44198-024-00168-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we obtain weighted Sobolev type inequalities with explicit constants that extend the inequalities obtained by Guo et al. (Math Res Lett 28(5):1419–1439, 2021) in the Riemannian setting. As an application, we prove some new logarithmic Sobolev type inequalities in some smooth metric measure spaces.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"175 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Sobolev Type Inequalities in a Smooth Metric Measure Space\",\"authors\":\"Pengyan Wang, Huiting Chang\",\"doi\":\"10.1007/s44198-024-00168-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we obtain weighted Sobolev type inequalities with explicit constants that extend the inequalities obtained by Guo et al. (Math Res Lett 28(5):1419–1439, 2021) in the Riemannian setting. As an application, we prove some new logarithmic Sobolev type inequalities in some smooth metric measure spaces.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00168-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00168-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们得到了带有显式常数的加权索波列夫型不等式,这些不等式扩展了郭等人(Math Res Lett 28(5):1419-1439, 2021)在黎曼背景下得到的不等式。作为应用,我们在一些光滑度量空间中证明了一些新的对数索波列夫不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Sobolev Type Inequalities in a Smooth Metric Measure Space

In this paper, we obtain weighted Sobolev type inequalities with explicit constants that extend the inequalities obtained by Guo et al. (Math Res Lett 28(5):1419–1439, 2021) in the Riemannian setting. As an application, we prove some new logarithmic Sobolev type inequalities in some smooth metric measure spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信