SGBGAN:为类不平衡数据集生成少数类图像

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qian Wan, Wenhui Guo, Yanjiang Wang
{"title":"SGBGAN:为类不平衡数据集生成少数类图像","authors":"Qian Wan, Wenhui Guo, Yanjiang Wang","doi":"10.1007/s00138-023-01506-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Class imbalance frequently arises in the context of image classification. Conventional generative adversarial networks (GANs) have a tendency to produce samples from the majority class when trained on class-imbalanced datasets. To address this issue, the Balancing GAN with gradient penalty (BAGAN-GP) has been proposed, but the outcomes may still exhibit a bias toward the majority categories when the similarity between images from different categories is substantial. In this study, we introduce a novel approach called the Pre-trained Gated Variational Autoencoder with Self-attention for Balancing Generative Adversarial Network (SGBGAN) as an image augmentation technique for generating high-quality images. The proposed method utilizes a Gated Variational Autoencoder with Self-attention (SA-GVAE) to initialize the GAN and transfers pre-trained SA-GVAE weights to the GAN. Our experimental results on Fashion-MNIST, CIFAR-10, and a highly unbalanced medical image dataset demonstrate that the SGBGAN outperforms other state-of-the-art methods. Results on Fréchet inception distance (FID) and structural similarity measures (SSIM) show that our model overcomes the instability problems that exist in other GANs. Especially on the Cells dataset, the FID of a minority class increases up to 23.09% compared to the latest BAGAN-GP, and the SSIM of a minority class increases up to 10.81%. It is proved that SGBGAN overcomes the class imbalance restriction and generates high-quality minority class images.\n</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>The diagram provides an overview of the technical approach employed in this research paper. To address the issue of class imbalance within the dataset, a novel technique called the Gated Variational Autoencoder with Self-attention (SA-GVAE) is proposed. This SA-GVAE is utilized to initialize the Generative Adversarial Network (GAN), with the pre-trained weights from SA-GVAE being transferred to the GAN. Consequently, a Pre-trained Gated Variational Autoencoder with Self-attention for Balancing GAN (SGBGAN) is formed, serving as an image augmentation tool to generate high-quality images. Ultimately, the generation of minority samples is employed to restore class balance within the dataset.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"200 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGBGAN: minority class image generation for class-imbalanced datasets\",\"authors\":\"Qian Wan, Wenhui Guo, Yanjiang Wang\",\"doi\":\"10.1007/s00138-023-01506-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Class imbalance frequently arises in the context of image classification. Conventional generative adversarial networks (GANs) have a tendency to produce samples from the majority class when trained on class-imbalanced datasets. To address this issue, the Balancing GAN with gradient penalty (BAGAN-GP) has been proposed, but the outcomes may still exhibit a bias toward the majority categories when the similarity between images from different categories is substantial. In this study, we introduce a novel approach called the Pre-trained Gated Variational Autoencoder with Self-attention for Balancing Generative Adversarial Network (SGBGAN) as an image augmentation technique for generating high-quality images. The proposed method utilizes a Gated Variational Autoencoder with Self-attention (SA-GVAE) to initialize the GAN and transfers pre-trained SA-GVAE weights to the GAN. Our experimental results on Fashion-MNIST, CIFAR-10, and a highly unbalanced medical image dataset demonstrate that the SGBGAN outperforms other state-of-the-art methods. Results on Fréchet inception distance (FID) and structural similarity measures (SSIM) show that our model overcomes the instability problems that exist in other GANs. Especially on the Cells dataset, the FID of a minority class increases up to 23.09% compared to the latest BAGAN-GP, and the SSIM of a minority class increases up to 10.81%. It is proved that SGBGAN overcomes the class imbalance restriction and generates high-quality minority class images.\\n</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3><p>The diagram provides an overview of the technical approach employed in this research paper. To address the issue of class imbalance within the dataset, a novel technique called the Gated Variational Autoencoder with Self-attention (SA-GVAE) is proposed. This SA-GVAE is utilized to initialize the Generative Adversarial Network (GAN), with the pre-trained weights from SA-GVAE being transferred to the GAN. Consequently, a Pre-trained Gated Variational Autoencoder with Self-attention for Balancing GAN (SGBGAN) is formed, serving as an image augmentation tool to generate high-quality images. Ultimately, the generation of minority samples is employed to restore class balance within the dataset.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"200 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-023-01506-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-023-01506-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在图像分类中经常会出现类不平衡的问题。传统的生成式对抗网络(GAN)在不平衡类别的数据集上进行训练时,往往会产生来自多数类别的样本。为了解决这个问题,有人提出了带梯度惩罚的平衡生成对抗网络(BAGAN-GP),但当不同类别的图像之间存在很大的相似性时,其结果仍可能表现出偏向多数类别的倾向。在本研究中,我们引入了一种名为 "带自注意的预训练门控变异自动编码器平衡生成对抗网络(SGBGAN)"的新方法,作为生成高质量图像的图像增强技术。所提出的方法利用具有自注意功能的门控变异自动编码器(SA-GVAE)来初始化 GAN,并将预先训练好的 SA-GVAE 权重转移到 GAN 中。我们在 Fashion-MNIST、CIFAR-10 和一个高度不平衡的医学图像数据集上的实验结果表明,SGBGAN 的性能优于其他最先进的方法。弗雷谢特起始距离(FID)和结构相似性度量(SSIM)的结果表明,我们的模型克服了其他 GAN 存在的不稳定性问题。特别是在 Cells 数据集上,与最新的 BAGAN-GP 相比,少数类别的 FID 增加了 23.09%,少数类别的 SSIM 增加了 10.81%。事实证明,SGBGAN 克服了类不平衡的限制,生成了高质量的少数类图像。 图解摘要该图概述了本研究论文中采用的技术方法。为了解决数据集中的类不平衡问题,本文提出了一种名为 "具有自我注意功能的门控变异自动编码器"(SA-GVAE)的新技术。这种 SA-GVAE 可用于初始化生成式对抗网络(GAN),并将 SA-GVAE 中预先训练好的权重转移到 GAN 中。这样,就形成了一个具有自注意平衡 GAN 的预训练门控变异自动编码器(SGBGAN),作为生成高质量图像的图像增强工具。最后,通过生成少数样本来恢复数据集中的类平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SGBGAN: minority class image generation for class-imbalanced datasets

SGBGAN: minority class image generation for class-imbalanced datasets

Abstract

Class imbalance frequently arises in the context of image classification. Conventional generative adversarial networks (GANs) have a tendency to produce samples from the majority class when trained on class-imbalanced datasets. To address this issue, the Balancing GAN with gradient penalty (BAGAN-GP) has been proposed, but the outcomes may still exhibit a bias toward the majority categories when the similarity between images from different categories is substantial. In this study, we introduce a novel approach called the Pre-trained Gated Variational Autoencoder with Self-attention for Balancing Generative Adversarial Network (SGBGAN) as an image augmentation technique for generating high-quality images. The proposed method utilizes a Gated Variational Autoencoder with Self-attention (SA-GVAE) to initialize the GAN and transfers pre-trained SA-GVAE weights to the GAN. Our experimental results on Fashion-MNIST, CIFAR-10, and a highly unbalanced medical image dataset demonstrate that the SGBGAN outperforms other state-of-the-art methods. Results on Fréchet inception distance (FID) and structural similarity measures (SSIM) show that our model overcomes the instability problems that exist in other GANs. Especially on the Cells dataset, the FID of a minority class increases up to 23.09% compared to the latest BAGAN-GP, and the SSIM of a minority class increases up to 10.81%. It is proved that SGBGAN overcomes the class imbalance restriction and generates high-quality minority class images.

Graphical abstract

The diagram provides an overview of the technical approach employed in this research paper. To address the issue of class imbalance within the dataset, a novel technique called the Gated Variational Autoencoder with Self-attention (SA-GVAE) is proposed. This SA-GVAE is utilized to initialize the Generative Adversarial Network (GAN), with the pre-trained weights from SA-GVAE being transferred to the GAN. Consequently, a Pre-trained Gated Variational Autoencoder with Self-attention for Balancing GAN (SGBGAN) is formed, serving as an image augmentation tool to generate high-quality images. Ultimately, the generation of minority samples is employed to restore class balance within the dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信