{"title":"敲除 Circ_0114428 可抑制 ROCK2 的表达,从而通过 miR-574-5p 缓解脂多糖诱导的人肺泡上皮细胞损伤","authors":"Jing Zhao, Qin Zhao, Qiuxia Duan","doi":"10.1186/s12576-023-00891-3","DOIUrl":null,"url":null,"abstract":"Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI. Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model. RNA expression of circ_0114428, miR-574-5p and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) was detected by qRT-PCR. Protein expression was checked by Western blotting. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine (EdU) and flow cytometry analysis, respectively. The levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was analyzed by lipid peroxidation Malondialdehyde (MDA) and Superoxide Dismutase (SOD) activity detection assays. The interplay among circ_0114428, miR-574-5p and ROCK2 was identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. Circ_0114428 and ROCK2 expression were significantly increased, but miR-574-5p was decreased in blood samples from sepsis patients and LPS-stimulated HPAEpiCs. LPS treatment led to decreased cell viability and proliferation and increased cell apoptosis, inflammation and oxidative stress; however, these effects were relieved after circ_0114428 knockdown. Besides, circ_0114428 acted as a miR-574-5p sponge and regulated LPS-treated HPAEpiC disorders through miR-574-5p. Meanwhile, ROCK2 was identified as a miR-574-5p target, and its silencing protected against LPS-induced cell injury. Importantly, circ_0114428 knockdown inhibited ROCK2 production by interacting with miR-574-5p. Circ_0114428 knockdown protected against LPS-induced HPAEpiC injury through miR-574-5p/ROCK2 axis, providing a novel therapeutic target in sepsis-induced ALI. ","PeriodicalId":22836,"journal":{"name":"The Journal of Physiological Sciences","volume":"213 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circ_0114428 knockdown inhibits ROCK2 expression to assuage lipopolysaccharide-induced human pulmonary alveolar epithelial cell injury through miR-574-5p\",\"authors\":\"Jing Zhao, Qin Zhao, Qiuxia Duan\",\"doi\":\"10.1186/s12576-023-00891-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI. Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model. RNA expression of circ_0114428, miR-574-5p and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) was detected by qRT-PCR. Protein expression was checked by Western blotting. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine (EdU) and flow cytometry analysis, respectively. The levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was analyzed by lipid peroxidation Malondialdehyde (MDA) and Superoxide Dismutase (SOD) activity detection assays. The interplay among circ_0114428, miR-574-5p and ROCK2 was identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. Circ_0114428 and ROCK2 expression were significantly increased, but miR-574-5p was decreased in blood samples from sepsis patients and LPS-stimulated HPAEpiCs. LPS treatment led to decreased cell viability and proliferation and increased cell apoptosis, inflammation and oxidative stress; however, these effects were relieved after circ_0114428 knockdown. Besides, circ_0114428 acted as a miR-574-5p sponge and regulated LPS-treated HPAEpiC disorders through miR-574-5p. Meanwhile, ROCK2 was identified as a miR-574-5p target, and its silencing protected against LPS-induced cell injury. Importantly, circ_0114428 knockdown inhibited ROCK2 production by interacting with miR-574-5p. Circ_0114428 knockdown protected against LPS-induced HPAEpiC injury through miR-574-5p/ROCK2 axis, providing a novel therapeutic target in sepsis-induced ALI. \",\"PeriodicalId\":22836,\"journal\":{\"name\":\"The Journal of Physiological Sciences\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physiological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-023-00891-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physiological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12576-023-00891-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circ_0114428 knockdown inhibits ROCK2 expression to assuage lipopolysaccharide-induced human pulmonary alveolar epithelial cell injury through miR-574-5p
Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI. Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model. RNA expression of circ_0114428, miR-574-5p and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) was detected by qRT-PCR. Protein expression was checked by Western blotting. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine (EdU) and flow cytometry analysis, respectively. The levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was analyzed by lipid peroxidation Malondialdehyde (MDA) and Superoxide Dismutase (SOD) activity detection assays. The interplay among circ_0114428, miR-574-5p and ROCK2 was identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. Circ_0114428 and ROCK2 expression were significantly increased, but miR-574-5p was decreased in blood samples from sepsis patients and LPS-stimulated HPAEpiCs. LPS treatment led to decreased cell viability and proliferation and increased cell apoptosis, inflammation and oxidative stress; however, these effects were relieved after circ_0114428 knockdown. Besides, circ_0114428 acted as a miR-574-5p sponge and regulated LPS-treated HPAEpiC disorders through miR-574-5p. Meanwhile, ROCK2 was identified as a miR-574-5p target, and its silencing protected against LPS-induced cell injury. Importantly, circ_0114428 knockdown inhibited ROCK2 production by interacting with miR-574-5p. Circ_0114428 knockdown protected against LPS-induced HPAEpiC injury through miR-574-5p/ROCK2 axis, providing a novel therapeutic target in sepsis-induced ALI.