无界线性算子的正规矩阵

IF 1.3 3区 数学 Q1 MATHEMATICS
Paolo Leonetti
{"title":"无界线性算子的正规矩阵","authors":"Paolo Leonetti","doi":"10.1017/prm.2024.1","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><span data-mathjax-type=\"texmath\"><span>$X,\\,Y$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline1.png\"/></span></span> be Banach spaces and fix a linear operator <span><span><span data-mathjax-type=\"texmath\"><span>$T \\in \\mathcal {L}(X,\\,Y)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline2.png\"/></span></span> and ideals <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {I},\\, \\mathcal {J}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline3.png\"/></span></span> on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices <span><span><span data-mathjax-type=\"texmath\"><span>$A=(A_{n,k}: n,\\,k \\in \\omega )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline4.png\"/></span></span> of linear operators in <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}(X,\\,Y)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline5.png\"/></span></span>, so that<span><span data-mathjax-type=\"texmath\"><span>\\[ \\mathcal{J}\\text{-}\\lim A\\boldsymbol{x}=T(\\mathcal{I}\\text{-}\\lim \\boldsymbol{x}) \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_eqnU1.png\"/></span>for every <span><span><span data-mathjax-type=\"texmath\"><span>$X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline6.png\"/></span></span>-valued sequence <span><span><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {x}=(x_0,\\,x_1,\\,\\ldots )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline7.png\"/></span></span> which is <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {I}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline8.png\"/></span></span>-convergent (and bounded). This allows us to establish the relationship between the classical Silverman–Toeplitz characterization of regular matrices and its multidimensional analogue for double sequences, its variant for matrices of linear operators, and the recent version (for the scalar case) in the context of ideal convergence. As byproducts, we obtain characterizations of several matrix classes and a generalization of the classical Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus theorem which has been recently obtained by De Bondt and Vernaeve [J. Math. Anal. Appl. <span>495</span> (2021)].</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular matrices of unbounded linear operators\",\"authors\":\"Paolo Leonetti\",\"doi\":\"10.1017/prm.2024.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$X,\\\\,Y$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline1.png\\\"/></span></span> be Banach spaces and fix a linear operator <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$T \\\\in \\\\mathcal {L}(X,\\\\,Y)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline2.png\\\"/></span></span> and ideals <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {I},\\\\, \\\\mathcal {J}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline3.png\\\"/></span></span> on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$A=(A_{n,k}: n,\\\\,k \\\\in \\\\omega )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline4.png\\\"/></span></span> of linear operators in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {L}(X,\\\\,Y)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline5.png\\\"/></span></span>, so that<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ \\\\mathcal{J}\\\\text{-}\\\\lim A\\\\boldsymbol{x}=T(\\\\mathcal{I}\\\\text{-}\\\\lim \\\\boldsymbol{x}) \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_eqnU1.png\\\"/></span>for every <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$X$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline6.png\\\"/></span></span>-valued sequence <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\boldsymbol {x}=(x_0,\\\\,x_1,\\\\,\\\\ldots )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline7.png\\\"/></span></span> which is <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {I}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline8.png\\\"/></span></span>-convergent (and bounded). This allows us to establish the relationship between the classical Silverman–Toeplitz characterization of regular matrices and its multidimensional analogue for double sequences, its variant for matrices of linear operators, and the recent version (for the scalar case) in the context of ideal convergence. As byproducts, we obtain characterizations of several matrix classes and a generalization of the classical Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus theorem which has been recently obtained by De Bondt and Vernaeve [J. Math. Anal. Appl. <span>495</span> (2021)].</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $X,\,Y$ 是巴拿赫空间,并在\mathcal {L}(X,\,Y)$ 中固定一个线性算子 $T 和在非负整数上的理想 $\mathcal {I},\, \mathcal {J}$ 。我们得到了关于矩阵 $A=(A_{n,k}:在$\mathcal{L}(X,\,Y)$中的线性算子的$A=(A_{n,k}: (n,\,k 在\omega中))$,所以[\mathcal{J}\text{-}\lim A\boldsymbol{x}=T(\mathcal{I}\text{-}\lim\boldsymbol{x}) \]对于每一个$X$值序列$\boldsymbol{x}=(x_0、\是 $\mathcal {I}$ 收敛的(并且是有界的)。这样,我们就可以建立正则矩阵的经典西尔弗曼-托普利兹特征描述与它在双序列中的多维相似性、它在线性算子矩阵中的变体,以及在理想收敛背景下的最新版本(标量情形)之间的关系。作为副产品,我们得到了几个矩阵类的特征和经典哈恩-舒尔定理的广义。在证明中,我们使用了德邦特和韦尔纳夫最近得到的巴纳赫-斯泰恩豪斯定理的理想版本[《数学分析应用》495 (2021)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular matrices of unbounded linear operators

Let $X,\,Y$ be Banach spaces and fix a linear operator $T \in \mathcal {L}(X,\,Y)$ and ideals $\mathcal {I},\, \mathcal {J}$ on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices $A=(A_{n,k}: n,\,k \in \omega )$ of linear operators in $\mathcal {L}(X,\,Y)$, so that\[ \mathcal{J}\text{-}\lim A\boldsymbol{x}=T(\mathcal{I}\text{-}\lim \boldsymbol{x}) \]for every $X$-valued sequence $\boldsymbol {x}=(x_0,\,x_1,\,\ldots )$ which is $\mathcal {I}$-convergent (and bounded). This allows us to establish the relationship between the classical Silverman–Toeplitz characterization of regular matrices and its multidimensional analogue for double sequences, its variant for matrices of linear operators, and the recent version (for the scalar case) in the context of ideal convergence. As byproducts, we obtain characterizations of several matrix classes and a generalization of the classical Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus theorem which has been recently obtained by De Bondt and Vernaeve [J. Math. Anal. Appl. 495 (2021)].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信