{"title":"涉及 g-g-Riesz 算子类的广义本质谱","authors":"Imen Ferjani, Omaima Kchaou, Bilel Krichen","doi":"10.1515/gmj-2024-2002","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the spectral properties of unbounded generalized Fredholm operators acting on a non-reflexive Banach space <jats:italic>X</jats:italic>. The results are formulated in terms of some topological conditions made on <jats:italic>X</jats:italic> or on its dual <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>X</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2002_eq_0247.png\" /> <jats:tex-math>{X^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we introduce the concept of the so-called g-g-Riesz linear operators as an extension of Riesz operators. The obtained results are used to discuss the incidence of the behavior of generalized essential spectra. Furthermore, a relation between the generalized essential spectrum and the left (resp. the right) essential spectrum by means of g-Riesz perturbation is provided.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"37 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized essential spectra involving the class of g-g-Riesz operators\",\"authors\":\"Imen Ferjani, Omaima Kchaou, Bilel Krichen\",\"doi\":\"10.1515/gmj-2024-2002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the spectral properties of unbounded generalized Fredholm operators acting on a non-reflexive Banach space <jats:italic>X</jats:italic>. The results are formulated in terms of some topological conditions made on <jats:italic>X</jats:italic> or on its dual <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>X</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2002_eq_0247.png\\\" /> <jats:tex-math>{X^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we introduce the concept of the so-called g-g-Riesz linear operators as an extension of Riesz operators. The obtained results are used to discuss the incidence of the behavior of generalized essential spectra. Furthermore, a relation between the generalized essential spectrum and the left (resp. the right) essential spectrum by means of g-Riesz perturbation is provided.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们探讨了作用于非反射巴拿赫空间 X 的无界广义弗雷德霍姆算子的谱性质。结果是根据对 X 或其对偶 X * {X^{*}} 的一些拓扑条件得出的。 .此外,我们还引入了所谓 g-g-Riesz 线性算子的概念,作为 Riesz 算子的扩展。所获得的结果被用来讨论广义本质谱行为的发生。此外,我们还通过 g-Riesz 扰动提供了广义本质谱与左(或右)本质谱之间的关系。
Generalized essential spectra involving the class of g-g-Riesz operators
In this paper, we explore the spectral properties of unbounded generalized Fredholm operators acting on a non-reflexive Banach space X. The results are formulated in terms of some topological conditions made on X or on its dual X*{X^{*}}. In addition, we introduce the concept of the so-called g-g-Riesz linear operators as an extension of Riesz operators. The obtained results are used to discuss the incidence of the behavior of generalized essential spectra. Furthermore, a relation between the generalized essential spectrum and the left (resp. the right) essential spectrum by means of g-Riesz perturbation is provided.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.