关于几乎赫尔墨斯函数的一些评论

IF 0.6 3区 数学 Q3 MATHEMATICS
Tedi Draghici, Cem Sayar
{"title":"关于几乎赫尔墨斯函数的一些评论","authors":"Tedi Draghici,&nbsp;Cem Sayar","doi":"10.1007/s10455-023-09943-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study critical points of natural functionals on various spaces of almost Hermitian structures on a compact manifold <span>\\(M^{2n}\\)</span>. We present a general framework, introducing the notion of gradient of an almost Hermitian functional. As a consequence of the diffeomorphism invariance, we show that a Schur’s type theorem still holds for general almost Hermitian functionals, generalizing a known fact for Riemannian functionals. We present two concrete examples, the Gauduchon’s functional and a close relative of it. These functionals have been studied previously, but not in the most general setup as we do here, and we make some new observations about their critical points.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on almost Hermitian functionals\",\"authors\":\"Tedi Draghici,&nbsp;Cem Sayar\",\"doi\":\"10.1007/s10455-023-09943-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study critical points of natural functionals on various spaces of almost Hermitian structures on a compact manifold <span>\\\\(M^{2n}\\\\)</span>. We present a general framework, introducing the notion of gradient of an almost Hermitian functional. As a consequence of the diffeomorphism invariance, we show that a Schur’s type theorem still holds for general almost Hermitian functionals, generalizing a known fact for Riemannian functionals. We present two concrete examples, the Gauduchon’s functional and a close relative of it. These functionals have been studied previously, but not in the most general setup as we do here, and we make some new observations about their critical points.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09943-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09943-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究紧凑流形 \(M^{2n}\)上各种近乎赫米蒂结构空间的自然函数临界点。我们提出了一个一般框架,引入了几乎赫米蒂函数梯度的概念。作为衍射不变性的结果,我们证明了舒尔式定理仍然适用于一般的近赫米提函数,这是对黎曼函数的已知事实的推广。我们提出了两个具体例子,即高杜洪函数及其近亲。这些函数以前也有人研究过,但不是像我们这里这样在最一般的情况下研究的,我们对它们的临界点做了一些新的观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some remarks on almost Hermitian functionals

We study critical points of natural functionals on various spaces of almost Hermitian structures on a compact manifold \(M^{2n}\). We present a general framework, introducing the notion of gradient of an almost Hermitian functional. As a consequence of the diffeomorphism invariance, we show that a Schur’s type theorem still holds for general almost Hermitian functionals, generalizing a known fact for Riemannian functionals. We present two concrete examples, the Gauduchon’s functional and a close relative of it. These functionals have been studied previously, but not in the most general setup as we do here, and we make some new observations about their critical points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信