广义哈格鲁普范畴的梯度扩展

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n5.a3
Pinhas Grossman, Masaki Izumi, Noah Snyder
{"title":"广义哈格鲁普范畴的梯度扩展","authors":"Pinhas Grossman, Masaki Izumi, Noah Snyder","doi":"10.4310/pamq.2023.v19.n5.a3","DOIUrl":null,"url":null,"abstract":"$\\def\\Z{\\mathbb{Z}}$We classify certain $\\Z_2$-graded extensions of generalized Haagerup categories in terms of numerical invariants satisfying polynomial equations. In particular, we construct a number of new examples of fusion categories, including: $\\Z_2$-graded extensions of $\\Z_{2n}$ generalized Haagerup categories for all $n \\leq 5$; $\\Z_2 \\times \\Z_2$-graded extensions of the Asaeda-Haagerup categories; and extensions of the $\\Z_2 \\times \\Z_2$ generalized Haagerup category by its outer automorphism group $A_4$. The construction uses endomorphism categories of operator algebras, and in particular, free products of Cuntz algebras with free group $\\mathrm{C}^\\ast$-algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graded extensions of generalized Haagerup categories\",\"authors\":\"Pinhas Grossman, Masaki Izumi, Noah Snyder\",\"doi\":\"10.4310/pamq.2023.v19.n5.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\Z{\\\\mathbb{Z}}$We classify certain $\\\\Z_2$-graded extensions of generalized Haagerup categories in terms of numerical invariants satisfying polynomial equations. In particular, we construct a number of new examples of fusion categories, including: $\\\\Z_2$-graded extensions of $\\\\Z_{2n}$ generalized Haagerup categories for all $n \\\\leq 5$; $\\\\Z_2 \\\\times \\\\Z_2$-graded extensions of the Asaeda-Haagerup categories; and extensions of the $\\\\Z_2 \\\\times \\\\Z_2$ generalized Haagerup category by its outer automorphism group $A_4$. The construction uses endomorphism categories of operator algebras, and in particular, free products of Cuntz algebras with free group $\\\\mathrm{C}^\\\\ast$-algebras.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n5.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n5.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$def\Z\{mathbb{Z}}$我们用满足多项式方程的数值不变式对广义哈格鲁普范畴的某些$\Z_2$级数扩展进行分类。特别是,我们构造了一些融合范畴的新例子,包括针对所有 $n \leq 5$的 $\Z_{2n}$ 广义哈格鲁普范畴的 $\Z_2$ 等级扩展;阿塞达-哈格鲁普范畴的 $\Z_2 \times \Z_2$ 等级扩展;以及 $\Z_2 \times \Z_2$ 广义哈格鲁普范畴通过其外自动群 $A_4$ 的扩展。这个构造使用了算子代数的内定型范畴,特别是 Cuntz 代数与自由群 $\mathrm{C}^\ast$ 代数的自由乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Graded extensions of generalized Haagerup categories
$\def\Z{\mathbb{Z}}$We classify certain $\Z_2$-graded extensions of generalized Haagerup categories in terms of numerical invariants satisfying polynomial equations. In particular, we construct a number of new examples of fusion categories, including: $\Z_2$-graded extensions of $\Z_{2n}$ generalized Haagerup categories for all $n \leq 5$; $\Z_2 \times \Z_2$-graded extensions of the Asaeda-Haagerup categories; and extensions of the $\Z_2 \times \Z_2$ generalized Haagerup category by its outer automorphism group $A_4$. The construction uses endomorphism categories of operator algebras, and in particular, free products of Cuntz algebras with free group $\mathrm{C}^\ast$-algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信