菠萝蛋白酶对常见神经退行性疾病的神经保护作用:系统综述

IF 0.5 4区 医学 Q4 NEUROSCIENCES
Sahar Rostamian, Elham Raeisi, Saeid Heidari-Soureshjani, Catherine M. T. Sherwin
{"title":"菠萝蛋白酶对常见神经退行性疾病的神经保护作用:系统综述","authors":"Sahar Rostamian, Elham Raeisi, Saeid Heidari-Soureshjani, Catherine M. T. Sherwin","doi":"10.1134/s1819712423040256","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In recent years, neurodegenerative diseases (NDs) have increased around the world and current treatments only provide temporary relief of the symptoms. So, we aimed to investigate the neuroprotective effects and possible mechanisms of bromelain on the main NDs such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple sclerosis (MS). In this systematic review, we followed the PRISMA checklist 2020 guidelines. Embase, PubMed, Web of Science, Scopus, and Cochrane Library were searched for related articles published before August 1, 2023, using the combination of keywords that were derived based on MeSH terms and similar systematic review studies. The required information was extracted from the publications and recorded in Excel form, and the outcome and mechanisms were reviewed. Finally, 17 studies were selected for the investigation. Bromelain alleviates neuroinflammation by downregulating pro-inflammatory cytokines in the central nervous system. Bromelain also neutralizes free radicals and up-regulated levels of endogenous antioxidant enzymes and improves mitochondrial function in neural cells. So, by antioxidant and anti-inflammatory activity, bromelain neutralizes apoptosis and neuronal damage. Moreover, the immune response in the CNS may be regulated by bromelain. apoptosis and neuronal damage. This proteolytic enzyme also reduced β-amyloid aggregation in AD. In vivo, in vitro, and ex vivo studies revealed that bromelain shows promising neuroprotective effects on NDs by reducing inflammatory factors, and oxidative stress, regulating the immune system, and reducing neurotoxicity. However, more clinical trial studies are needed in this field.</p>","PeriodicalId":19119,"journal":{"name":"Neurochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Effects of Bromelain on the Common Neurodegenerative Diseases: A Systematic Review\",\"authors\":\"Sahar Rostamian, Elham Raeisi, Saeid Heidari-Soureshjani, Catherine M. T. Sherwin\",\"doi\":\"10.1134/s1819712423040256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In recent years, neurodegenerative diseases (NDs) have increased around the world and current treatments only provide temporary relief of the symptoms. So, we aimed to investigate the neuroprotective effects and possible mechanisms of bromelain on the main NDs such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple sclerosis (MS). In this systematic review, we followed the PRISMA checklist 2020 guidelines. Embase, PubMed, Web of Science, Scopus, and Cochrane Library were searched for related articles published before August 1, 2023, using the combination of keywords that were derived based on MeSH terms and similar systematic review studies. The required information was extracted from the publications and recorded in Excel form, and the outcome and mechanisms were reviewed. Finally, 17 studies were selected for the investigation. Bromelain alleviates neuroinflammation by downregulating pro-inflammatory cytokines in the central nervous system. Bromelain also neutralizes free radicals and up-regulated levels of endogenous antioxidant enzymes and improves mitochondrial function in neural cells. So, by antioxidant and anti-inflammatory activity, bromelain neutralizes apoptosis and neuronal damage. Moreover, the immune response in the CNS may be regulated by bromelain. apoptosis and neuronal damage. This proteolytic enzyme also reduced β-amyloid aggregation in AD. In vivo, in vitro, and ex vivo studies revealed that bromelain shows promising neuroprotective effects on NDs by reducing inflammatory factors, and oxidative stress, regulating the immune system, and reducing neurotoxicity. However, more clinical trial studies are needed in this field.</p>\",\"PeriodicalId\":19119,\"journal\":{\"name\":\"Neurochemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1134/s1819712423040256\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1134/s1819712423040256","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 近年来,神经退行性疾病(NDs)在全球呈上升趋势,而目前的治疗方法只能暂时缓解症状。因此,我们旨在研究菠萝蛋白酶对阿尔茨海默病(AD)、帕金森病(PD)和多发性硬化症(MS)等主要神经退行性疾病的神经保护作用及其可能机制。在本系统综述中,我们遵循了 PRISMA 检查表 2020 指南。我们使用根据 MeSH 术语和类似系统综述研究得出的关键词组合,检索了 Embase、PubMed、Web of Science、Scopus 和 Cochrane Library 中 2023 年 8 月 1 日之前发表的相关文章。从出版物中提取所需的信息并以 Excel 表格的形式记录下来,同时对结果和机制进行审查。最后,选择了 17 项研究进行调查。菠萝蛋白酶通过下调中枢神经系统中的促炎细胞因子,缓解神经炎症。菠萝蛋白酶还能中和自由基,提高内源性抗氧化酶的水平,改善神经细胞的线粒体功能。因此,通过抗氧化和抗炎活性,菠萝蛋白酶中和了细胞凋亡和神经元损伤。此外,中枢神经系统的免疫反应也可能受到菠萝蛋白酶的调节。这种蛋白水解酶还能减少注意力缺失症中β-淀粉样蛋白的聚集。体内、体外和体外研究表明,菠萝蛋白酶通过减少炎症因子、氧化应激、调节免疫系统和降低神经毒性,对 NDs 具有良好的神经保护作用。然而,这一领域还需要更多的临床试验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuroprotective Effects of Bromelain on the Common Neurodegenerative Diseases: A Systematic Review

Abstract

In recent years, neurodegenerative diseases (NDs) have increased around the world and current treatments only provide temporary relief of the symptoms. So, we aimed to investigate the neuroprotective effects and possible mechanisms of bromelain on the main NDs such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple sclerosis (MS). In this systematic review, we followed the PRISMA checklist 2020 guidelines. Embase, PubMed, Web of Science, Scopus, and Cochrane Library were searched for related articles published before August 1, 2023, using the combination of keywords that were derived based on MeSH terms and similar systematic review studies. The required information was extracted from the publications and recorded in Excel form, and the outcome and mechanisms were reviewed. Finally, 17 studies were selected for the investigation. Bromelain alleviates neuroinflammation by downregulating pro-inflammatory cytokines in the central nervous system. Bromelain also neutralizes free radicals and up-regulated levels of endogenous antioxidant enzymes and improves mitochondrial function in neural cells. So, by antioxidant and anti-inflammatory activity, bromelain neutralizes apoptosis and neuronal damage. Moreover, the immune response in the CNS may be regulated by bromelain. apoptosis and neuronal damage. This proteolytic enzyme also reduced β-amyloid aggregation in AD. In vivo, in vitro, and ex vivo studies revealed that bromelain shows promising neuroprotective effects on NDs by reducing inflammatory factors, and oxidative stress, regulating the immune system, and reducing neurotoxicity. However, more clinical trial studies are needed in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Journal
Neurochemical Journal 医学-神经科学
自引率
20.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: Neurochemical Journal (Neirokhimiya) provides a source for the communication of the latest findings in all areas of contemporary neurochemistry and other fields of relevance (including molecular biology, biochemistry, physiology, neuroimmunology, pharmacology) in an afford to expand our understanding of the functions of the nervous system. The journal presents papers on functional neurochemistry, nervous system receptors, neurotransmitters, myelin, chromaffin granules and other components of the nervous system, as well as neurophysiological and clinical aspects, behavioral reactions, etc. Relevant topics include structure and function of the nervous system proteins, neuropeptides, nucleic acids, nucleotides, lipids, and other biologically active components. The journal is devoted to the rapid publication of regular papers containing the results of original research, reviews highlighting major developments in neurochemistry, short communications, new experimental studies that use neurochemical methodology, descriptions of new methods of value for neurochemistry, theoretical material suggesting novel principles and approaches to neurochemical problems, presentations of new hypotheses and significant findings, discussions, chronicles of congresses, meetings, and conferences with short presentations of the most sensational and timely reports, information on the activity of the Russian and International Neurochemical Societies, as well as advertisements of reagents and equipment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信