自相关函数的平面图解法和可识别树序列

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n5.a4
Mikhail Khovanov, Robert Laugwitz
{"title":"自相关函数的平面图解法和可识别树序列","authors":"Mikhail Khovanov, Robert Laugwitz","doi":"10.4310/pamq.2023.v19.n5.a4","DOIUrl":null,"url":null,"abstract":"A pair of biadjoint functors between two categories produces a collection of elements in the centers of these categories, one for each isotopy class of nested circles in the plane. If the centers are equipped with a trace map into the ground field, then one assigns an element of that field to a diagram of nested circles. We focus on the self-adjoint functor case of this construction and study the reverse problem of recovering such a functor and a category given values associated to diagrams of nested circles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar diagrammatics of self-adjoint functors and recognizable tree series\",\"authors\":\"Mikhail Khovanov, Robert Laugwitz\",\"doi\":\"10.4310/pamq.2023.v19.n5.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pair of biadjoint functors between two categories produces a collection of elements in the centers of these categories, one for each isotopy class of nested circles in the plane. If the centers are equipped with a trace map into the ground field, then one assigns an element of that field to a diagram of nested circles. We focus on the self-adjoint functor case of this construction and study the reverse problem of recovering such a functor and a category given values associated to diagrams of nested circles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n5.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n5.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

两个范畴之间的一对双联合函数会在这些范畴的中心产生一个元素集合,平面上嵌套圆的每个同位类都有一个元素集合。如果这些中心配备了进入地场的迹映射,那么我们就可以把地场的一个元素分配给嵌套圆的一个图。我们将重点放在这种构造的自相关函子情况上,并研究给定与嵌套圆图相关的值来恢复这种函子和范畴的反向问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Planar diagrammatics of self-adjoint functors and recognizable tree series
A pair of biadjoint functors between two categories produces a collection of elements in the centers of these categories, one for each isotopy class of nested circles in the plane. If the centers are equipped with a trace map into the ground field, then one assigns an element of that field to a diagram of nested circles. We focus on the self-adjoint functor case of this construction and study the reverse problem of recovering such a functor and a category given values associated to diagrams of nested circles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信