有实数嵌入的数域上的弗罗贝尼斯问题

Pub Date : 2024-01-29 DOI:10.1007/s00233-023-10403-9
Alex Feiner, Zion Hefty
{"title":"有实数嵌入的数域上的弗罗贝尼斯问题","authors":"Alex Feiner, Zion Hefty","doi":"10.1007/s00233-023-10403-9","DOIUrl":null,"url":null,"abstract":"<p>Given a number field <i>K</i> with at least one real embedding, we generalize the notion of the classical Frobenius problem to the ring of integers <span>\\({\\mathfrak {O}}_K\\)</span> of <i>K</i> by describing certain Frobenius semigroups, <span>\\(\\textrm{Frob}(\\alpha _1,\\ldots ,\\alpha _n)\\)</span>, for appropriate elements <span>\\(\\alpha _1,\\ldots ,\\alpha _n\\in {\\mathfrak {O}}_K\\)</span>. We construct a partial ordering on <span>\\(\\textrm{Frob}(\\alpha _1,\\ldots ,\\alpha _n)\\)</span>, and show that this set is completely described by the maximal elements with respect to this ordering. We also show that <span>\\(\\textrm{Frob}(\\alpha _1,\\ldots ,\\alpha _n)\\)</span> will always have finitely many such maximal elements, but in general, the number of maximal elements can grow without bound as <i>n</i> is fixed and <span>\\(\\alpha _1,\\ldots ,\\alpha _n\\in {\\mathfrak {O}}_K\\)</span> vary. Explicit examples of the Frobenius semigroups are also calculated for certain cases in real quadratic number fields.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Frobenius problem over number fields with a real embedding\",\"authors\":\"Alex Feiner, Zion Hefty\",\"doi\":\"10.1007/s00233-023-10403-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a number field <i>K</i> with at least one real embedding, we generalize the notion of the classical Frobenius problem to the ring of integers <span>\\\\({\\\\mathfrak {O}}_K\\\\)</span> of <i>K</i> by describing certain Frobenius semigroups, <span>\\\\(\\\\textrm{Frob}(\\\\alpha _1,\\\\ldots ,\\\\alpha _n)\\\\)</span>, for appropriate elements <span>\\\\(\\\\alpha _1,\\\\ldots ,\\\\alpha _n\\\\in {\\\\mathfrak {O}}_K\\\\)</span>. We construct a partial ordering on <span>\\\\(\\\\textrm{Frob}(\\\\alpha _1,\\\\ldots ,\\\\alpha _n)\\\\)</span>, and show that this set is completely described by the maximal elements with respect to this ordering. We also show that <span>\\\\(\\\\textrm{Frob}(\\\\alpha _1,\\\\ldots ,\\\\alpha _n)\\\\)</span> will always have finitely many such maximal elements, but in general, the number of maximal elements can grow without bound as <i>n</i> is fixed and <span>\\\\(\\\\alpha _1,\\\\ldots ,\\\\alpha _n\\\\in {\\\\mathfrak {O}}_K\\\\)</span> vary. Explicit examples of the Frobenius semigroups are also calculated for certain cases in real quadratic number fields.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10403-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-023-10403-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个至少有一个实嵌入的数域 K,我们通过描述某些弗罗贝纽斯半群,将经典弗罗贝纽斯问题的概念推广到 K 的整数环 \({\mathfrak {O}}_K\) 上、\(textrm{Frob}(\alpha _1,\ldots ,\alpha _n)\), for appropriate elements \(\alpha _1,\ldots ,\alpha _n\in {\mathfrak {O}}_K\).我们在(textrm{Frob}(\alpha _1,\ldots ,\alpha_n)\)上构造了一个部分排序,并证明这个集合完全是由关于这个排序的最大元素描述的。我们还证明了\(textrm{Frob}(\alpha _1,\ldots ,\alpha _n)\)总是有有限多个这样的最大元素,但一般来说,随着 n 的固定和\(\alpha _1,\ldots ,\alpha _n\in {\mathfrak {O}}_K\) 的变化,最大元素的数量可以无限制地增长。在实二次数域的某些情况下,还计算了弗罗贝尼斯半群的显式例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Frobenius problem over number fields with a real embedding

分享
查看原文
The Frobenius problem over number fields with a real embedding

Given a number field K with at least one real embedding, we generalize the notion of the classical Frobenius problem to the ring of integers \({\mathfrak {O}}_K\) of K by describing certain Frobenius semigroups, \(\textrm{Frob}(\alpha _1,\ldots ,\alpha _n)\), for appropriate elements \(\alpha _1,\ldots ,\alpha _n\in {\mathfrak {O}}_K\). We construct a partial ordering on \(\textrm{Frob}(\alpha _1,\ldots ,\alpha _n)\), and show that this set is completely described by the maximal elements with respect to this ordering. We also show that \(\textrm{Frob}(\alpha _1,\ldots ,\alpha _n)\) will always have finitely many such maximal elements, but in general, the number of maximal elements can grow without bound as n is fixed and \(\alpha _1,\ldots ,\alpha _n\in {\mathfrak {O}}_K\) vary. Explicit examples of the Frobenius semigroups are also calculated for certain cases in real quadratic number fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信