后代彩色琼斯多项式

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n5.a2
Stavros Garoufalidis, Rinat Kashaev
{"title":"后代彩色琼斯多项式","authors":"Stavros Garoufalidis, Rinat Kashaev","doi":"10.4310/pamq.2023.v19.n5.a2","DOIUrl":null,"url":null,"abstract":"We discuss two realizations of the colored Jones polynomials of a knot, one appearing in an unnoticed work of the second author in 1994 on quantum R-matrices at roots of unity obtained from solutions of the pentagon identity, and another formulated in terms of a sequence of elements of the Habiro ring appearing in recent work of D. Zagier and the first author on the Refined Quantum Modularity Conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The descendant colored Jones polynomials\",\"authors\":\"Stavros Garoufalidis, Rinat Kashaev\",\"doi\":\"10.4310/pamq.2023.v19.n5.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss two realizations of the colored Jones polynomials of a knot, one appearing in an unnoticed work of the second author in 1994 on quantum R-matrices at roots of unity obtained from solutions of the pentagon identity, and another formulated in terms of a sequence of elements of the Habiro ring appearing in recent work of D. Zagier and the first author on the Refined Quantum Modularity Conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n5.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n5.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了结的彩色琼斯多项式的两种实现方式,一种出现在第二作者 1994 年关于从五边形特性解中获得的统一根量子 R 矩阵的一项未被注意的工作中,另一种则出现在 D. Zagier 和第一作者关于精炼量子模块性猜想的最新工作中,以哈比罗环元素序列的形式制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The descendant colored Jones polynomials
We discuss two realizations of the colored Jones polynomials of a knot, one appearing in an unnoticed work of the second author in 1994 on quantum R-matrices at roots of unity obtained from solutions of the pentagon identity, and another formulated in terms of a sequence of elements of the Habiro ring appearing in recent work of D. Zagier and the first author on the Refined Quantum Modularity Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信