关于连续熵的说明

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n5.a5
Roberto Longo, Edward Witten
{"title":"关于连续熵的说明","authors":"Roberto Longo, Edward Witten","doi":"10.4310/pamq.2023.v19.n5.a5","DOIUrl":null,"url":null,"abstract":"Von Neumann entropy has a natural extension to the case of an arbitrary semifinite von Neumann algebra, as was considered by I. E. Segal. We relate this entropy to the relative entropy and show that the entropy increase for an inclusion of von Neumann factors is bounded by the logarithm of the Jones index. The bound is optimal if the factors are infinite dimensional.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on continuous entropy\",\"authors\":\"Roberto Longo, Edward Witten\",\"doi\":\"10.4310/pamq.2023.v19.n5.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Von Neumann entropy has a natural extension to the case of an arbitrary semifinite von Neumann algebra, as was considered by I. E. Segal. We relate this entropy to the relative entropy and show that the entropy increase for an inclusion of von Neumann factors is bounded by the logarithm of the Jones index. The bound is optimal if the factors are infinite dimensional.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n5.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n5.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冯-诺依曼熵可以自然扩展到任意半有限冯-诺依曼代数的情况,正如 I. E. Segal 所考虑的那样。我们将这一熵与相对熵联系起来,并证明包含冯-诺依曼因子的熵增加受琼斯指数对数的约束。如果因子是无限维的,那么这个界限就是最佳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on continuous entropy
Von Neumann entropy has a natural extension to the case of an arbitrary semifinite von Neumann algebra, as was considered by I. E. Segal. We relate this entropy to the relative entropy and show that the entropy increase for an inclusion of von Neumann factors is bounded by the logarithm of the Jones index. The bound is optimal if the factors are infinite dimensional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信