分析度量的散射刚性

IF 1.8 2区 数学 Q1 MATHEMATICS
Yannick Guedes-Bonthonneau, Colin Guillarmou, Malo Jézéquel
{"title":"分析度量的散射刚性","authors":"Yannick Guedes-Bonthonneau, Colin Guillarmou, Malo Jézéquel","doi":"10.4310/cjm.2024.v12.n1.a2","DOIUrl":null,"url":null,"abstract":"For analytic negatively curved Riemannian manifolds with analytic strictly convex boundary, we show that the scattering map for the geodesic flow determines the manifold up to isometry. In particular, one recovers both the topology and the metric. More generally our result holds in the analytic category under the no conjugate point and hyperbolic trapped set assumptions.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering rigidity for analytic metrics\",\"authors\":\"Yannick Guedes-Bonthonneau, Colin Guillarmou, Malo Jézéquel\",\"doi\":\"10.4310/cjm.2024.v12.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For analytic negatively curved Riemannian manifolds with analytic strictly convex boundary, we show that the scattering map for the geodesic flow determines the manifold up to isometry. In particular, one recovers both the topology and the metric. More generally our result holds in the analytic category under the no conjugate point and hyperbolic trapped set assumptions.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2024.v12.n1.a2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2024.v12.n1.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于具有解析严格凸边界的解析负弯黎曼流形,我们证明了大地流的散射图决定了流形的等距性。特别是,我们可以同时恢复拓扑和度量。更一般地说,在无共轭点和双曲困集假设下,我们的结果在解析范畴中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering rigidity for analytic metrics
For analytic negatively curved Riemannian manifolds with analytic strictly convex boundary, we show that the scattering map for the geodesic flow determines the manifold up to isometry. In particular, one recovers both the topology and the metric. More generally our result holds in the analytic category under the no conjugate point and hyperbolic trapped set assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信