Sturm-Liouville 方程节点的锐界

{"title":"Sturm-Liouville 方程节点的锐界","authors":"","doi":"10.1007/s00605-023-01940-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A node of a Sturm–Liouville problem is an interior zero of an eigenfunction. The aim of this paper is to present a simple and new proof of the result on sharp bounds of the node for the Sturm–Liouville equation with the Dirichlet boundary condition when the <span> <span>\\(L^1\\)</span> </span> norm of potentials is given. Based on the outer approximation method, we will reduce this infinite-dimensional optimization problem to the finite-dimensional optimization problem. </p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bounds of nodes for Sturm–Liouville equations\",\"authors\":\"\",\"doi\":\"10.1007/s00605-023-01940-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A node of a Sturm–Liouville problem is an interior zero of an eigenfunction. The aim of this paper is to present a simple and new proof of the result on sharp bounds of the node for the Sturm–Liouville equation with the Dirichlet boundary condition when the <span> <span>\\\\(L^1\\\\)</span> </span> norm of potentials is given. Based on the outer approximation method, we will reduce this infinite-dimensional optimization problem to the finite-dimensional optimization problem. </p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01940-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01940-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 Sturm-Liouville 问题的节点是特征函数的内部零点。本文的目的是在给定势的\(L^1\) 准则时,对具有 Dirichlet 边界条件的 Sturm-Liouville 方程的节点锐界结果提出一个简单而新颖的证明。基于外近似方法,我们将把这个无穷维优化问题简化为有限维优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp bounds of nodes for Sturm–Liouville equations

Abstract

A node of a Sturm–Liouville problem is an interior zero of an eigenfunction. The aim of this paper is to present a simple and new proof of the result on sharp bounds of the node for the Sturm–Liouville equation with the Dirichlet boundary condition when the \(L^1\) norm of potentials is given. Based on the outer approximation method, we will reduce this infinite-dimensional optimization problem to the finite-dimensional optimization problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信