正则表达式、理想交集和对数

Pub Date : 2024-01-29 DOI:10.1007/s00020-023-02753-4
Jonathan H. Brown, Adam H. Fuller, David R. Pitts, Sarah A. Reznikoff
{"title":"正则表达式、理想交集和对数","authors":"Jonathan H. Brown, Adam H. Fuller, David R. Pitts, Sarah A. Reznikoff","doi":"10.1007/s00020-023-02753-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(B \\subseteq A\\)</span> be an inclusion of <span>\\(C^*\\)</span>-algebras. We study the relationship between the regular ideals of <i>B</i> and regular ideals of <i>A</i>. We show that if <span>\\(B \\subseteq A\\)</span> is a regular <span>\\(C^*\\)</span>-inclusion and there is a faithful invariant conditional expectation from <i>A</i> onto <i>B</i>, then there is an isomorphism between the lattice of regular ideals of <i>A</i> and invariant regular ideals of <i>B</i>. We study properties of inclusions preserved under quotients by regular ideals. This includes showing that if <span>\\(D \\subseteq A\\)</span> is a Cartan inclusion and <i>J</i> is a regular ideal in <i>A</i>, then <span>\\(D/(J\\cap D)\\)</span> is a Cartan subalgebra of <i>A</i>/<i>J</i>. We provide a description of regular ideals in the reduced crossed product of a C<span>\\(^*\\)</span>-algebra by a discrete group.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular Ideals, Ideal Intersections, and Quotients\",\"authors\":\"Jonathan H. Brown, Adam H. Fuller, David R. Pitts, Sarah A. Reznikoff\",\"doi\":\"10.1007/s00020-023-02753-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(B \\\\subseteq A\\\\)</span> be an inclusion of <span>\\\\(C^*\\\\)</span>-algebras. We study the relationship between the regular ideals of <i>B</i> and regular ideals of <i>A</i>. We show that if <span>\\\\(B \\\\subseteq A\\\\)</span> is a regular <span>\\\\(C^*\\\\)</span>-inclusion and there is a faithful invariant conditional expectation from <i>A</i> onto <i>B</i>, then there is an isomorphism between the lattice of regular ideals of <i>A</i> and invariant regular ideals of <i>B</i>. We study properties of inclusions preserved under quotients by regular ideals. This includes showing that if <span>\\\\(D \\\\subseteq A\\\\)</span> is a Cartan inclusion and <i>J</i> is a regular ideal in <i>A</i>, then <span>\\\\(D/(J\\\\cap D)\\\\)</span> is a Cartan subalgebra of <i>A</i>/<i>J</i>. We provide a description of regular ideals in the reduced crossed product of a C<span>\\\\(^*\\\\)</span>-algebra by a discrete group.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-023-02753-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-023-02753-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(B \subseteq A\) 是 \(C^*\)- 算法的一个包含。我们研究了 B 的正则表达式和 A 的正则表达式之间的关系。我们证明了如果 \(B \subseteq A\) 是一个正则的 \(C^*\)- 包含,并且存在一个从 A 到 B 的忠实不变条件期望,那么 A 的正则表达式的网格和 B 的不变正则表达式之间存在同构。这包括证明如果 \(D \subseteq A\) 是一个 Cartan 包含,而 J 是 A 中的正则理想,那么 \(D/(J\cap D)\) 是 A/J 的 Cartan 子代数。我们对离散群的 C\(^*\)-algebra 的还原交叉积中的正则表达式进行了描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regular Ideals, Ideal Intersections, and Quotients

Let \(B \subseteq A\) be an inclusion of \(C^*\)-algebras. We study the relationship between the regular ideals of B and regular ideals of A. We show that if \(B \subseteq A\) is a regular \(C^*\)-inclusion and there is a faithful invariant conditional expectation from A onto B, then there is an isomorphism between the lattice of regular ideals of A and invariant regular ideals of B. We study properties of inclusions preserved under quotients by regular ideals. This includes showing that if \(D \subseteq A\) is a Cartan inclusion and J is a regular ideal in A, then \(D/(J\cap D)\) is a Cartan subalgebra of A/J. We provide a description of regular ideals in the reduced crossed product of a C\(^*\)-algebra by a discrete group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信