{"title":"奥利兹调制空间上的线性和双线性傅里叶乘法器","authors":"Oscar Blasco, Serap Öztop, Rüya Üster","doi":"10.1007/s00605-023-01937-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Phi _i, \\Psi _i\\)</span> be Young functions, <span>\\(\\omega _i\\)</span> be weights and <span>\\(M^{\\Phi _i,\\Psi _i}_{\\omega _i}(\\mathbb {R} ^{d})\\)</span> be the corresponding Orlicz modulation spaces for <span>\\(i=1,2,3\\)</span>. We consider linear (respect. bilinear) multipliers on <span>\\(\\mathbb {R} ^{d}\\)</span>, that is bounded measurable functions <span>\\(m(\\xi )\\)</span> (respect. <span>\\(m(\\xi ,\\eta )\\)</span>) on <span>\\(\\mathbb {R} ^{d}\\)</span> (respect. <span>\\(\\mathbb {R} ^{2d}\\)</span>) such that </p><span>$$\\begin{aligned} T_m(f)(x)=\\int _{\\mathbb {R} ^{d}}{\\hat{f}}(\\xi ) m(\\xi )e^{2\\pi i \\langle \\xi , x\\rangle }d\\xi \\end{aligned}$$</span><p>(respect. </p><span>$$\\begin{aligned} B_m(f_1,f_2)(x)=\\int _{\\mathbb {R} ^{d}}\\int _{\\mathbb {R} ^{d}} \\hat{f_1}(\\xi ) \\hat{f_2}(\\eta )m(\\xi ,\\eta )e^{2\\pi i \\langle \\xi +\\eta , x\\rangle }d\\xi d\\eta \\end{aligned}$$</span><p>define a bounded linear (respect. bilinear) operator from <span>\\(M^{\\Phi _1,\\Psi _1}_{\\omega _1}(\\mathbb {R} ^{d})\\)</span> to <span>\\(M^{\\Phi _2,\\Psi _2}_{\\omega _2}(\\mathbb {R} ^{d})\\)</span> (respect. <span>\\(M^{\\Phi _1,\\Psi _1}_{\\omega _1}(\\mathbb {R} ^{d})\\times M^{\\Phi _2,\\Psi _2}_{\\omega _2}(\\mathbb {R} ^{d})\\)</span> to <span>\\(M^{\\Phi _3,\\Psi _3}_{\\omega _3}(\\mathbb {R} ^{d})\\)</span>). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and bilinear Fourier multipliers on Orlicz modulation spaces\",\"authors\":\"Oscar Blasco, Serap Öztop, Rüya Üster\",\"doi\":\"10.1007/s00605-023-01937-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Phi _i, \\\\Psi _i\\\\)</span> be Young functions, <span>\\\\(\\\\omega _i\\\\)</span> be weights and <span>\\\\(M^{\\\\Phi _i,\\\\Psi _i}_{\\\\omega _i}(\\\\mathbb {R} ^{d})\\\\)</span> be the corresponding Orlicz modulation spaces for <span>\\\\(i=1,2,3\\\\)</span>. We consider linear (respect. bilinear) multipliers on <span>\\\\(\\\\mathbb {R} ^{d}\\\\)</span>, that is bounded measurable functions <span>\\\\(m(\\\\xi )\\\\)</span> (respect. <span>\\\\(m(\\\\xi ,\\\\eta )\\\\)</span>) on <span>\\\\(\\\\mathbb {R} ^{d}\\\\)</span> (respect. <span>\\\\(\\\\mathbb {R} ^{2d}\\\\)</span>) such that </p><span>$$\\\\begin{aligned} T_m(f)(x)=\\\\int _{\\\\mathbb {R} ^{d}}{\\\\hat{f}}(\\\\xi ) m(\\\\xi )e^{2\\\\pi i \\\\langle \\\\xi , x\\\\rangle }d\\\\xi \\\\end{aligned}$$</span><p>(respect. </p><span>$$\\\\begin{aligned} B_m(f_1,f_2)(x)=\\\\int _{\\\\mathbb {R} ^{d}}\\\\int _{\\\\mathbb {R} ^{d}} \\\\hat{f_1}(\\\\xi ) \\\\hat{f_2}(\\\\eta )m(\\\\xi ,\\\\eta )e^{2\\\\pi i \\\\langle \\\\xi +\\\\eta , x\\\\rangle }d\\\\xi d\\\\eta \\\\end{aligned}$$</span><p>define a bounded linear (respect. bilinear) operator from <span>\\\\(M^{\\\\Phi _1,\\\\Psi _1}_{\\\\omega _1}(\\\\mathbb {R} ^{d})\\\\)</span> to <span>\\\\(M^{\\\\Phi _2,\\\\Psi _2}_{\\\\omega _2}(\\\\mathbb {R} ^{d})\\\\)</span> (respect. <span>\\\\(M^{\\\\Phi _1,\\\\Psi _1}_{\\\\omega _1}(\\\\mathbb {R} ^{d})\\\\times M^{\\\\Phi _2,\\\\Psi _2}_{\\\\omega _2}(\\\\mathbb {R} ^{d})\\\\)</span> to <span>\\\\(M^{\\\\Phi _3,\\\\Psi _3}_{\\\\omega _3}(\\\\mathbb {R} ^{d})\\\\)</span>). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.\\n</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01937-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01937-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear and bilinear Fourier multipliers on Orlicz modulation spaces
Let \(\Phi _i, \Psi _i\) be Young functions, \(\omega _i\) be weights and \(M^{\Phi _i,\Psi _i}_{\omega _i}(\mathbb {R} ^{d})\) be the corresponding Orlicz modulation spaces for \(i=1,2,3\). We consider linear (respect. bilinear) multipliers on \(\mathbb {R} ^{d}\), that is bounded measurable functions \(m(\xi )\) (respect. \(m(\xi ,\eta )\)) on \(\mathbb {R} ^{d}\) (respect. \(\mathbb {R} ^{2d}\)) such that
define a bounded linear (respect. bilinear) operator from \(M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\) to \(M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})\) (respect. \(M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\times M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})\) to \(M^{\Phi _3,\Psi _3}_{\omega _3}(\mathbb {R} ^{d})\)). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.