几乎邓福德-佩蒂斯多线性算子的阿伦-伯纳扩展

Geraldo Botelho, Luis Alberto Garcia
{"title":"几乎邓福德-佩蒂斯多线性算子的阿伦-伯纳扩展","authors":"Geraldo Botelho, Luis Alberto Garcia","doi":"10.1007/s00605-023-01936-w","DOIUrl":null,"url":null,"abstract":"<p>We study when Aron–Berner extensions of (separately) almost Dunford–Pettis multilinear operators between Banach lattices are (separately) almost Dunford–Pettis. For instance, for a <span>\\(\\sigma \\)</span>-Dedekind complete Banach lattice <i>F</i> containing a copy of <span>\\(\\ell _\\infty \\)</span>, we characterize the Banach lattices <span>\\(E_1, \\ldots , E_m\\)</span> for which every continuous <i>m</i>-linear operator from <span>\\(E_1 \\times \\cdots \\times E_m\\)</span> to <i>F</i> admits an almost Dunford–Pettis Aron–Berner extension. Illustrative examples are provided.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aron–Berner extensions of almost Dunford–Pettis multilinear operators\",\"authors\":\"Geraldo Botelho, Luis Alberto Garcia\",\"doi\":\"10.1007/s00605-023-01936-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study when Aron–Berner extensions of (separately) almost Dunford–Pettis multilinear operators between Banach lattices are (separately) almost Dunford–Pettis. For instance, for a <span>\\\\(\\\\sigma \\\\)</span>-Dedekind complete Banach lattice <i>F</i> containing a copy of <span>\\\\(\\\\ell _\\\\infty \\\\)</span>, we characterize the Banach lattices <span>\\\\(E_1, \\\\ldots , E_m\\\\)</span> for which every continuous <i>m</i>-linear operator from <span>\\\\(E_1 \\\\times \\\\cdots \\\\times E_m\\\\)</span> to <i>F</i> admits an almost Dunford–Pettis Aron–Berner extension. Illustrative examples are provided.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01936-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01936-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了巴拿赫网格之间(单独)几乎是邓福德-佩提斯(Dunford-Pettis)多线性算子的阿伦-伯纳扩展是(单独)几乎是邓福德-佩提斯(Dunford-Pettis)的情况。例如,对于一个包含 \(\ell _\infty \) 副本的 \(\sigma \)-Dedekind 完全巴拿赫晶格 F,我们描述了巴拿赫晶格 \(E_1, \ldots , E_m\)的特征,对于这些晶格,从 \(E_1 \times \cdots \times E_m\) 到 F 的每个连续 m 线性算子都允许一个几乎是 Dunford-Pettis 的 Aron-Berner 扩展。本文提供了一些说明性的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aron–Berner extensions of almost Dunford–Pettis multilinear operators

We study when Aron–Berner extensions of (separately) almost Dunford–Pettis multilinear operators between Banach lattices are (separately) almost Dunford–Pettis. For instance, for a \(\sigma \)-Dedekind complete Banach lattice F containing a copy of \(\ell _\infty \), we characterize the Banach lattices \(E_1, \ldots , E_m\) for which every continuous m-linear operator from \(E_1 \times \cdots \times E_m\) to F admits an almost Dunford–Pettis Aron–Berner extension. Illustrative examples are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信