与斐波那契数列和平方根函数相关的双巴齐莱维奇函数的法布尔多项式系数不等式

IF 1.5 3区 数学 Q1 MATHEMATICS
H. M. Srivastava, Shahid Khan, Sarfraz Nawaz Malik, Fairouz Tchier, Afis Saliu, Qin Xin
{"title":"与斐波那契数列和平方根函数相关的双巴齐莱维奇函数的法布尔多项式系数不等式","authors":"H. M. Srivastava, Shahid Khan, Sarfraz Nawaz Malik, Fairouz Tchier, Afis Saliu, Qin Xin","doi":"10.1186/s13660-024-03090-9","DOIUrl":null,"url":null,"abstract":"Two new subclasses of the class of bi-Bazilevič functions, which are related to the Fibonacci-number series and the square-root functions, are introduced and studied in this article. Under a special choice of the parameter involved, these two classes of Bazilevič functions reduce to two new subclasses of star-like biunivalent functions related with the Fibonacci-number series and the square-root functions. Using the Faber polynomial expansion (FPE) technique, we find the general coefficient bounds for the functions belonging to each of these classes. We also find bounds for the initial coefficients for bi-Bazilevič functions and demonstrate how unexpectedly these initial coefficients behave in relation to the square-root functions and the Fibonacci-number series.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"173 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faber polynomial coefficient inequalities for bi-Bazilevič functions associated with the Fibonacci-number series and the square-root functions\",\"authors\":\"H. M. Srivastava, Shahid Khan, Sarfraz Nawaz Malik, Fairouz Tchier, Afis Saliu, Qin Xin\",\"doi\":\"10.1186/s13660-024-03090-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two new subclasses of the class of bi-Bazilevič functions, which are related to the Fibonacci-number series and the square-root functions, are introduced and studied in this article. Under a special choice of the parameter involved, these two classes of Bazilevič functions reduce to two new subclasses of star-like biunivalent functions related with the Fibonacci-number series and the square-root functions. Using the Faber polynomial expansion (FPE) technique, we find the general coefficient bounds for the functions belonging to each of these classes. We also find bounds for the initial coefficients for bi-Bazilevič functions and demonstrate how unexpectedly these initial coefficients behave in relation to the square-root functions and the Fibonacci-number series.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03090-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03090-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了与斐波纳契数列和平方根函数相关的双巴齐列维奇函数类的两个新子类。在所涉及参数的特殊选择下,这两类巴齐列维奇函数简化为与斐波纳契数列和平方根函数相关的两个新的星状双等价函数子类。利用法布尔多项式展开(FPE)技术,我们找到了属于这两类函数的一般系数边界。我们还找到了 bi-Bazilevič 函数的初始系数边界,并证明了这些初始系数与平方根函数和斐波那契数列的关系是多么出人意料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faber polynomial coefficient inequalities for bi-Bazilevič functions associated with the Fibonacci-number series and the square-root functions
Two new subclasses of the class of bi-Bazilevič functions, which are related to the Fibonacci-number series and the square-root functions, are introduced and studied in this article. Under a special choice of the parameter involved, these two classes of Bazilevič functions reduce to two new subclasses of star-like biunivalent functions related with the Fibonacci-number series and the square-root functions. Using the Faber polynomial expansion (FPE) technique, we find the general coefficient bounds for the functions belonging to each of these classes. We also find bounds for the initial coefficients for bi-Bazilevič functions and demonstrate how unexpectedly these initial coefficients behave in relation to the square-root functions and the Fibonacci-number series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信