(2 + 1)-Dimensional Mel'nikov Equation(2 + 1)维梅尔尼科夫方程的一般多泡、高阶块状和半有理解

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Xue-Wei Yan, Yong Chen, Xiu-Bin Wang, Shou-Fu Tian
{"title":"(2 + 1)-Dimensional Mel'nikov Equation(2 + 1)维梅尔尼科夫方程的一般多泡、高阶块状和半有理解","authors":"Xue-Wei Yan, Yong Chen, Xiu-Bin Wang, Shou-Fu Tian","doi":"10.7566/jpsj.93.024006","DOIUrl":null,"url":null,"abstract":"In this work, we show several types of (semi)-rational solutions for the two dimensional Mel’nikov equation. We derive multi-breather wave solutions. They present the oblique breathers, homoclinic orbits and their mixtures under two parameter constraints. We also obtain the general high-order lump solutions by employing the Schur polynomials. When internal parameters <i>a</i><sub>2</sub><i><sub>m</sub></i><sub>+1</sub> are large, the patterns display the polygons containing lower-order lump pattern in the central region together with possible multiple fundamental lumps in the outer region. When time <i>t</i> is large, two types of lump patterns are presented by considering the prediction solutions. The first type of lump patterns contain fundamental lumps with triangular shapes. The second type of lump patterns contain fundamental lumps with non-triangular shapes in the outer region, together with possible fundamental lumps with triangular shapes in the inner region. Furthermore, we construct the semi-rational solutions to exhibit the fascinating processes of fusion and fission between lumps and line solitons. These solutions should be of great interest in a variety of high-dimensional multi-component systems.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Multi-Breather, High-Order Lump and Semi-Rational Solutions of the (2 + 1)-Dimensional Mel’nikov Equation\",\"authors\":\"Xue-Wei Yan, Yong Chen, Xiu-Bin Wang, Shou-Fu Tian\",\"doi\":\"10.7566/jpsj.93.024006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we show several types of (semi)-rational solutions for the two dimensional Mel’nikov equation. We derive multi-breather wave solutions. They present the oblique breathers, homoclinic orbits and their mixtures under two parameter constraints. We also obtain the general high-order lump solutions by employing the Schur polynomials. When internal parameters <i>a</i><sub>2</sub><i><sub>m</sub></i><sub>+1</sub> are large, the patterns display the polygons containing lower-order lump pattern in the central region together with possible multiple fundamental lumps in the outer region. When time <i>t</i> is large, two types of lump patterns are presented by considering the prediction solutions. The first type of lump patterns contain fundamental lumps with triangular shapes. The second type of lump patterns contain fundamental lumps with non-triangular shapes in the outer region, together with possible fundamental lumps with triangular shapes in the inner region. Furthermore, we construct the semi-rational solutions to exhibit the fascinating processes of fusion and fission between lumps and line solitons. These solutions should be of great interest in a variety of high-dimensional multi-component systems.\",\"PeriodicalId\":17304,\"journal\":{\"name\":\"Journal of the Physical Society of Japan\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Physical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7566/jpsj.93.024006\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.024006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们展示了二维梅尔尼科夫方程的几种(半)有理解。我们推导了多呼吸波解。在两个参数约束下,它们呈现出斜呼吸波、同轴轨道及其混合物。我们还利用舒尔多项式获得了一般的高阶肿块解。当内部参数 a2m+1 较大时,图案显示出包含中心区域低阶块状图案的多边形,以及外围区域可能存在的多个基本块状图案。当时间 t 较大时,考虑到预测解,会出现两种肿块模式。第一种块状模式包含三角形的基本块。第二种肿块模式包含外围区域非三角形的基本肿块,以及内部区域可能存在的三角形基本肿块。此外,我们还构建了半理性解,以展示块体与线孤子之间的奇妙融合与裂变过程。这些解在各种高维多组分系统中都会引起极大兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Multi-Breather, High-Order Lump and Semi-Rational Solutions of the (2 + 1)-Dimensional Mel’nikov Equation
In this work, we show several types of (semi)-rational solutions for the two dimensional Mel’nikov equation. We derive multi-breather wave solutions. They present the oblique breathers, homoclinic orbits and their mixtures under two parameter constraints. We also obtain the general high-order lump solutions by employing the Schur polynomials. When internal parameters a2m+1 are large, the patterns display the polygons containing lower-order lump pattern in the central region together with possible multiple fundamental lumps in the outer region. When time t is large, two types of lump patterns are presented by considering the prediction solutions. The first type of lump patterns contain fundamental lumps with triangular shapes. The second type of lump patterns contain fundamental lumps with non-triangular shapes in the outer region, together with possible fundamental lumps with triangular shapes in the inner region. Furthermore, we construct the semi-rational solutions to exhibit the fascinating processes of fusion and fission between lumps and line solitons. These solutions should be of great interest in a variety of high-dimensional multi-component systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
17.60%
发文量
325
审稿时长
3 months
期刊介绍: The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below. Subjects Covered JPSJ covers all the fields of physics including (but not restricted to) Elementary particles and fields Nuclear physics Atomic and Molecular Physics Fluid Dynamics Plasma physics Physics of Condensed Matter Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials Physics of Nanoscale Materials Optics and Quantum Electronics Physics of Complex Systems Mathematical Physics Chemical physics Biophysics Geophysics Astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信