用于推断整数阶和分数阶神经元模型动态的物理信息型神经网络分裂技术

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Simin Shekarpaz,Fanhai Zeng, George Karniadakis
{"title":"用于推断整数阶和分数阶神经元模型动态的物理信息型神经网络分裂技术","authors":"Simin Shekarpaz,Fanhai Zeng, George Karniadakis","doi":"10.4208/cicp.oa-2023-0121","DOIUrl":null,"url":null,"abstract":"We introduce a new approach for solving forward systems of differential\nequations using a combination of splitting methods and physics-informed neural networks (PINNs). The proposed method, splitting PINN, effectively addresses the challenge of applying PINNs to forward dynamical systems and demonstrates improved\naccuracy through its application to neuron models. Specifically, we apply operator\nsplitting to decompose the original neuron model into sub-problems that are then\nsolved using PINNs. Moreover, we develop an $L^1$ scheme for discretizing fractional\nderivatives in fractional neuron models, leading to improved accuracy and efficiency.\nThe results of this study highlight the potential of splitting PINNs in solving both\ninteger- and fractional-order neuron models, as well as other similar systems in computational science and engineering.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"255 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting Physics-Informed Neural Networks for Inferring the Dynamics of Integer- and Fractional-Order Neuron Models\",\"authors\":\"Simin Shekarpaz,Fanhai Zeng, George Karniadakis\",\"doi\":\"10.4208/cicp.oa-2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new approach for solving forward systems of differential\\nequations using a combination of splitting methods and physics-informed neural networks (PINNs). The proposed method, splitting PINN, effectively addresses the challenge of applying PINNs to forward dynamical systems and demonstrates improved\\naccuracy through its application to neuron models. Specifically, we apply operator\\nsplitting to decompose the original neuron model into sub-problems that are then\\nsolved using PINNs. Moreover, we develop an $L^1$ scheme for discretizing fractional\\nderivatives in fractional neuron models, leading to improved accuracy and efficiency.\\nThe results of this study highlight the potential of splitting PINNs in solving both\\ninteger- and fractional-order neuron models, as well as other similar systems in computational science and engineering.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0121\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0121","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种利用分裂方法和物理信息神经网络(PINNs)相结合求解前向微分方程系统的新方法。所提出的拆分 PINN 方法有效地解决了将 PINN 应用于前向动力学系统的难题,并通过将其应用于神经元模型证明了其更高的精度。具体来说,我们应用算子拆分法将原始神经元模型分解为子问题,然后使用 PINNs 解决这些子问题。此外,我们还开发了一种 $L^1$ 方案,用于离散分数神经元模型中的分数因子,从而提高了精度和效率。这项研究的结果凸显了拆分 PINNs 在求解整数阶和分数阶神经元模型以及计算科学与工程中其他类似系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting Physics-Informed Neural Networks for Inferring the Dynamics of Integer- and Fractional-Order Neuron Models
We introduce a new approach for solving forward systems of differential equations using a combination of splitting methods and physics-informed neural networks (PINNs). The proposed method, splitting PINN, effectively addresses the challenge of applying PINNs to forward dynamical systems and demonstrates improved accuracy through its application to neuron models. Specifically, we apply operator splitting to decompose the original neuron model into sub-problems that are then solved using PINNs. Moreover, we develop an $L^1$ scheme for discretizing fractional derivatives in fractional neuron models, leading to improved accuracy and efficiency. The results of this study highlight the potential of splitting PINNs in solving both integer- and fractional-order neuron models, as well as other similar systems in computational science and engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信