论准均匀矩形网格上拉普拉斯函数的 $Q^2$ 谱元法的单调性

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Logan J. Cross, Xiangxiong Zhang
{"title":"论准均匀矩形网格上拉普拉斯函数的 $Q^2$ 谱元法的单调性","authors":"Logan J. Cross, Xiangxiong Zhang","doi":"10.4208/cicp.oa-2023-0206","DOIUrl":null,"url":null,"abstract":"The monotonicity of discrete Laplacian implies discrete maximum principle, which in general does not hold for high order schemes. The $Q^2$ spectral element\nmethod has been proven monotone on a uniform rectangular mesh. In this paper we\nprove the monotonicity of the $Q^2$ spectral element method on quasi-uniform rectangular meshes under certain mesh constraints. In particular, we propose a relaxed Lorenz’s\ncondition for proving monotonicity.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Monotonicity of $Q^2$ Spectral Element Method for Laplacian on Quasi-Uniform Rectangular Meshes\",\"authors\":\"Logan J. Cross, Xiangxiong Zhang\",\"doi\":\"10.4208/cicp.oa-2023-0206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monotonicity of discrete Laplacian implies discrete maximum principle, which in general does not hold for high order schemes. The $Q^2$ spectral element\\nmethod has been proven monotone on a uniform rectangular mesh. In this paper we\\nprove the monotonicity of the $Q^2$ spectral element method on quasi-uniform rectangular meshes under certain mesh constraints. In particular, we propose a relaxed Lorenz’s\\ncondition for proving monotonicity.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0206\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0206","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

离散拉普拉奇的单调性意味着离散最大值原则,而这在高阶方案中一般不成立。Q^2$谱元法已被证明在均匀矩形网格上具有单调性。在本文中,我们证明了在某些网格约束条件下,Q^2$谱元法在准均匀矩形网格上的单调性。特别是,我们提出了证明单调性的宽松洛伦兹条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Monotonicity of $Q^2$ Spectral Element Method for Laplacian on Quasi-Uniform Rectangular Meshes
The monotonicity of discrete Laplacian implies discrete maximum principle, which in general does not hold for high order schemes. The $Q^2$ spectral element method has been proven monotone on a uniform rectangular mesh. In this paper we prove the monotonicity of the $Q^2$ spectral element method on quasi-uniform rectangular meshes under certain mesh constraints. In particular, we propose a relaxed Lorenz’s condition for proving monotonicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信