用于四边形网格上对流-扩散-反作用问题的新型上风有限体积元素法

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ang Li,Hongtao Yang,Yulong Gao, Yonghai Li
{"title":"用于四边形网格上对流-扩散-反作用问题的新型上风有限体积元素法","authors":"Ang Li,Hongtao Yang,Yulong Gao, Yonghai Li","doi":"10.4208/cicp.oa-2023-0189","DOIUrl":null,"url":null,"abstract":"This paper is devoted to constructing and analyzing a new upwind finite\nvolume element method for anisotropic convection-diffusion-reaction problems on\ngeneral quadrilateral meshes. We prove the coercivity, and establish the optimal error estimates in $H^1$ and $L^2$ norm respectively. The novelty is the discretization of convection term, which takes the two terms Taylor expansion. This scheme has not only\noptimal first-order accuracy in $H^1$ norm, but also optimal second-order accuracy in $L^2$ norm, both for dominant diffusion and dominant convection. Numerical experiments\nconfirm the theoretical results.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"22 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Upwind Finite Volume Element Method for Convection-Diffusion-Reaction Problems on Quadrilateral Meshes\",\"authors\":\"Ang Li,Hongtao Yang,Yulong Gao, Yonghai Li\",\"doi\":\"10.4208/cicp.oa-2023-0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to constructing and analyzing a new upwind finite\\nvolume element method for anisotropic convection-diffusion-reaction problems on\\ngeneral quadrilateral meshes. We prove the coercivity, and establish the optimal error estimates in $H^1$ and $L^2$ norm respectively. The novelty is the discretization of convection term, which takes the two terms Taylor expansion. This scheme has not only\\noptimal first-order accuracy in $H^1$ norm, but also optimal second-order accuracy in $L^2$ norm, both for dominant diffusion and dominant convection. Numerical experiments\\nconfirm the theoretical results.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0189\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0189","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于构建和分析一种新的上风有限体积元方法,该方法适用于一般四边形网格上的各向异性对流-扩散-反应问题。我们证明了该方法的矫顽力,并分别在 $H^1$ 和 $L^2$ 规范下建立了最优误差估计。新颖之处在于对流项的离散化,它采用了两期泰勒展开。该方案不仅在 $H^1$ 准则下具有最优的一阶精度,而且在 $L^2$ 准则下具有最优的二阶精度,同时适用于显性扩散和显性对流。数值实验证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Upwind Finite Volume Element Method for Convection-Diffusion-Reaction Problems on Quadrilateral Meshes
This paper is devoted to constructing and analyzing a new upwind finite volume element method for anisotropic convection-diffusion-reaction problems on general quadrilateral meshes. We prove the coercivity, and establish the optimal error estimates in $H^1$ and $L^2$ norm respectively. The novelty is the discretization of convection term, which takes the two terms Taylor expansion. This scheme has not only optimal first-order accuracy in $H^1$ norm, but also optimal second-order accuracy in $L^2$ norm, both for dominant diffusion and dominant convection. Numerical experiments confirm the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信